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Short summary

Shared electric scooters (e-scooters) have recently become a popular mode of micromobility solu-
tion and this rapid growth causes significant operational challenges. One of the challenges micro-
mobility companies face is collecting idle low-charge fleets from different corners of the city. The
collector is usually a truck that needs to make a tour in town to collect these e-scooters. One solu-
tion can be for the operator to dynamically define special zones where e-scooters with low-charge
are collected. In this paper, we propose a two-layered approach to tackle the problem. We propose
a dynamic programming approach to investigate the required number and locations of designated
low-charge drop-off points for the first layer of the problem. A simulated origin-destination data
set of 30 e-scooters on TU Delft campus area is used for a time horizon of 8 working days and a
time discretization level of 15 minutes. The results suggested consolidating low-charge e-scooters in
three low-charge drop-off locations considering the state of charge (SOC) and distance of e-scooters
from the low-charge drop-off zones. Then, we discuss the potential implications of our findings on
recharging operations and spatial efficiency that are defined dynamically.

Keywords: Shared electric micro-mobility, dynamic programming, data-driven zoning, real-time
operational decision, fleet rebalancing.

1 Introduction

A free-floating shared mobility system gives the user the flexibility to pick up and drop off the
vehicle anywhere in the operating area. Operational issues are brought on by this flexibility, par-
ticularly in vehicle charging operations. A dynamic route design for the charging truck or overnight
charging can be used to empower shared micromobility systems, but both of these methods are
either very expensive for the system’s performance or cause computational complexity Osorio et
al. (2021).

In free-floating shared micromobility, the majority of the studies focus on dynamic routing prob-
lems and consider locations of gathering points as given for collecting vehicles or rebalancing Luo et
al. (2022). In Mahmoodian et al. (2022) a dynamic hubbing strategy was addressed to satisfy the
first demand of the following day and improve the efficiency of the shared bike rebalancing scheme.
However, their main focus is on the rebalancing plan for simulated hubs. A unified overnight
charging and vehicle rebalancing approach is suggested by Osorio et al. (2021) to carry out these
tasks for a shared e-scooter system more effectively. They provide a charging-and-routing plan that
concurrently determines an effective pickup and drop-off strategy while taking into account the
SOC of all onboard e-scooters. Although they recommend breaking up a large zone into smaller
zones in order to lessen the computational complexity for future studies, it has neither been im-
plemented nor dynamic data-driven zoning discussed.

One potential approach to defining and addressing such problems is through the utilization of time-
space network modeling techniques, as demonstrated in the context of logistic networks by Akyüz
et al. (2023). However, it should be noted that this approach can be computationally intensive
and time-consuming. As an alternative, dynamic programming modeling may offer significant
advantages in terms of optimization performance, as demonstrated in the work of Al-Kanj et al.
(2020). Unlike the current literature, we consider a dynamic and data-driven approach to decide
on consolidating the low-charge e-scooters and in the second layer of the network charging them
with a moving charger on spot. Specifically, in our proposed method as soon as the first zone is
selected for the first low-charge e-scooter to drop off, this zone becomes the point of interest for
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all future e-scooters whose charge drops in this zone and its neighboring zones. While considering
the service level indicator for the rider which is the distance deviation that the selected low-charge
drop-off zone causes from the rider’s destination.

2 Methodology

To investigate the designated low-charge drop-off areas, a dynamic programming model based on
the destination and SOC of the low-charge e-scooter is designed. We considered real-world prac-
tices for e-scooters that become unavailable after their battery level dips below 18% (Felyx.com).
Therefore, we set a robust battery level threshold of 25% to define the low-charge e-scooter. The
decision epochs or time steps are modeled in discrete time t = {0, 1, 2, ..., 32} with 15 minutes
duration over 8 working hours. If the decision epoch is at time t, then all information arriving
between t− 1 and t is collected and assigned at time t. t = 0 indicates the beginning of the oper-
ation. An e-scooter is shown with i index where i ∈ {1, ...,N} and N refers to the total number of
low-charge e-scooters. To improve the computational complexity of the model, the operating area
is discretized into several same-size hexagons. Each hexagon is considered as a potential low-charge
drop-off location. The zones are shown j where j ∈ {1, ...,Z} and Z represents the total number
of hexagons.
Using the language of dynamic resource management, e-scooters, and potential low-charge drop-off
locations are resources (R). The physical system state vector is then given by SR

t = (Rti, Rtj), in
which Rti and Rtj indicate the states of e-scooters and potential low-charge drop-off areas at time
t, respectively. The state vector of e-scooters over time is defined below.

Rti =

(
i1
i2

)
=

 current location of e-scooter

SOC


Where the current location of the e-scooter equals to user’s destination and corresponds to the lati-
tude and longitude coordinates of where the low-charge e-scooter is located at time t and searching
for a low-charge drop-off location. Also, the state vector of potential low-charge drop-off locations
changes over time in terms of the number of low-charge e-scooters parked at the low-charge drop-off
location and is defined as following

Rtj =

(
j1
j2

)
=

 zone index

sum of low-charge e-scooters
parked in the zone till time t


The action of the dynamic model is a binary variable indicating whether the potential low-charge
drop-off location with attribute Rtj should be offered to a low-charge e-scooter with attribute vec-
tor Rti at time t.

xt
ij =


1 if e-scooter i is sent to low-charge drop-off location j at time t

0 otherwise
(1)

The decision variable xt
ij must satisfy the following constraints:

Z∑
j

xt
ij = 1 ∀ t, i (2)

N∑
i

T∑
t

xt
ij′ ≤

N∑
i

T∑
t

M(1− xt
ij) ∀ (j, j′) ∈ adjacent zones (3)

xt
ij = {0, 1} ∀ t, i, j (4)

Equation (2) indicates that each low-charge e-scooter should only be assigned to one zone at each
time step. In equation 3, we define the neighboring zone context. In zoning the operating area,
we obtained adjacent sets for each zone. If the grid distance between zones is less than one grid,
those zones are instant neighbors (they have common boundaries) and are in the same adjacent set.
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Equation 3 states that if zone j becomes a drop-off location, then all of the zones in its adjacent
set cannot be an option (M refers to a big number). Equation (4) shows the variable domain. In
addition, we consider the feasibility of trips from the final destination of e-scooters and selected
low-charge drop-off locations based on the distance between these two locations at time t (dtij).
If this distance equals traveling more than three zones the trip becomes infeasible. Similarly, the
insufficiency of the SOC to perform the trip makes the trip infeasible.

Transition function

The transition function represents how the system evolves over time. We model the transition func-
tion deterministically. E-scooters’ current location or user’s destination can be obtained through
GPS information. However, in this study, we simulate the OD trips based. The SOC of e-scooters
is calculated using the OD matrix by eq. (5), under the assumption that each e-scooter at most
can perform one trip during each time step.

SOCt
i = SOCt−1

i − (δ ∗ travelled distance of e-scooter i between time (t− 1) and t) (5)

where δ indicates the rate of discharge per kilometer. The value of this parameter is calculated
by considering the e-scooter battery Volt, the maximum distance, and the maximum speed it can
perform. Regarding changes in zone states, the attribute of the drop-off zones will change as the
number of low-charge e-scooters parked in the zone till time t (i.e. j2) changes.

∑t−1
t=1 qt(j) captures

the number of parked low-charge e-scooters at zone j up to time t. Equation (6) specifies that
at the beginning of the planning horizon, there is no low-charge e-scooter parked in the system,
and equation 7 calculates the number of parked low-charge e-scooters at time t in zone j based
on the state of the system in the previous time step (t− 1), it shows the summation of all parked
low-charge e-scooters till t− 1 and the number of e-scooters that are sent to the low-charge drop-
off location at time t. This parameter is a post-decision parameter and will be updated after the
decision is made at time t. The model uses the value of the parameter for the previous time step
to make a decision at time t.

qtj = 0 t = 0,∀j (6)

qtj = qt−1
j +

N∑
i

xt
ij ∀ t > 0, j (7)

When the e-scooter is not low-charge, its SOC will be updated through equation 5 based on its
trip between time t− 1 and t. Therefore, We denote the transition function by

St = SM (St−1, Xt) (8)

where SM () governs the transition from pre-decision state St−1 to pre-decision state St, and Xt

is a decision vector containing xt
ij decisions. SM () is a general statement for all of the transition

functions we mention in this section.

Objective function

Each decision in the system produces a contribution ctij to the system, especially to the routing costs
of the charging truck. Collecting low-charge e-scooters in designated areas within the operating
zone intends to save the system’s routing costs for recharging operations. Hence, the objective
function of the model aims at assigning low-charge e-scooter i to the nearest feasible low-charge
drop-off zone j, if there is any. We aim at maximizing the reward that might obtain by the
consolidation of low-charge e-scooters by equation 9.

ctij =


∑

t=0 q
t−1
j − dtij if xt

ij = 1

0 otherwise
(9)

Where the contribution is defined based on the number of parked low-charge e-scooters till time
t − 1 at location j (qt−1

j ) and the service level indicator which assures that the distance between
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the low-charge drop-off location j and the final destination of the e-scooter i trip should be small
(dtij). We assume linear contribution, as shown in equation 10.

Ct(St, xt) =

N∑
i

M∑
j

ctijx
t
ij (10)

Policy maps a state to an action/ decision. The optimal policy (π ∈ Π) maximizes the sum of
contributions over all time periods as shown in equation 11.

F ∗
t (St) = max

π∈Π

(
T∑

t=0

C(St, X
π
t (St))|St−1

)
(11)

where Xπ
t (St) is a function that determines xt

ij given St when we are taking policy π, and Π is
a set of decision functions or policies. To find the best policy, we intend to maximize the reward
function subject to the above-mentioned constraints.

3 Results and discussion

We used simulated data of 30 e-scooters operating on the campus of TU Delft in one working day
(8 hours), which was divided into 32 time slots as we considered every 15 minutes as a time step,
to solve a toy problem as a proof of concept for our model. The rate of discharge is set at 8% per
km. At the start of the planning period, it is expected that e-scooters are fully charged. Each of
the 37 regular hexagons, each with a side length of 60 m, that make up the operating area can
serve as a low-charge drop-off location.

The outcomes of using the model on this set of data are shown in Table 1, where 12 low-charge
e-scooters emerged in 12 separate zones. The first column indicates the time steps in which low-
charge e-scooters show up. The second column contains e-scooters’ specific ids. The third column
shows the final destination of e-scooters trips. The term ’outside’ in this column specified that the
destination of the e-scooter trip is outside of the operating zone. Therefore, it should be left within
the operating area. Column 5 indicates the final selected consolidated low-charge drop-off zones.
Also, the SOC of low-charge e-scooter before and after their assignment to the drop-off zone are
shown in columns 4 and 6, respectively.

The optimality gap of the obtained results is 0%, which tells at each time step, the model finds
the optimal solution. At the end of the planning horizon, selected zones are zone numbers 14, 20,
and 3 with 4, 5, and 3 low-charge e-scooter parked in these zones, respectively. The mean occurred
deviation from the destination is 114 m, and 41 m and 194 m are the minimum and maximum
values of the deviations from the riders’ final destinations, respectively.

The model will determine the initial e-scooter(s) that showed up as low-charge, calculate the dis-
tance between the location of the e-scooter and its surrounding zones, and then provide the rider
with a drop-off zone that is close to her destination while also following the neighboring zone con-
straint equation 3. For instance, in Table 1, the first low-charge e-scooters appeared at time step
19, in zones 9 and 27. If allowed to be left at the destinations, these zones have 4 neighboring zones
in common (i.e., {10, 12, 29, 30}). Also, the required travel distances for e-scooters to reach the
centers of the destination zones are 40 m, and 50 m for vehicles 3 and 25, respectively. Whereas,
selected drop-off locations i.e. zones 14 and 20 have fewer common neighboring zones (i.e., {24,
29, 30}) and the distances between the locations of e-scooters and the centers of the selected zones
are not much larger (70 m for both e-scooters). Therefore, zones 14 and 20 are selected as the
first low-charge drop-off zones, and the number of parked low-charge e-scooters in these zones will
increase, which means they become more relevant to be a drop-off zone for the e-scooters appear in
the next time steps. Using the same logic, the model sends the e-scooter to zone 14 at time step 20.

At time 21, one low-charge e-scooter appears in zone 3, which is farther than the permitted dis-
tance (service level assurance) from the selected drop-off zones 14 and 27, and {31, 15, 28, 23, 19}
zones are in a neighboring distance of the selected drop-off locations so they can not be a potential
drop-off location, then it is allowed to be left at its destination (as its distance from potential zone
6, 19, 21, 13, and 18 are greater than the distance to the centroid of zone 3). For the rest of the
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time steps, the low-charge e-scooters are consolidated in these three drop-off locations following
the same reasoning. It is worth noting that, we also assure that e-scooters are able to perform
the trip to low-charge drop-off zone with sufficient SOC. Figure 1a shows the zoning structure of
the operating area. In Figure 1b the selected low-charge drop-off zones are shown in green circles,
and the zones which are in adjacent sets of the selected drop-off zones are shown in black color.
Zones in blue color are neither a low-charge e-scooter destination nor under the coverage area of
the selected zones.

Regarding recharging operations, in the upper level of the recharging operation problem, a routing
problem arises, where the charging truck’s traveling distance needs to be minimized. The routing
problem involves determining the optimal path that the charging truck should take to recharge
the e-scooters, taking into account the locations of the consolidated low-charge e-scooters and
the charging truck’s constraints. The objective of this routing problem is to minimize the total
traveling distance of the charging truck while satisfying the demand for e-scooter charging. By
applying this method, we are shrinking the size of the network for the charging truck by decreasing
the visiting nodes. In the proposed example, the charging truck has 3 nodes to visit to recharge
the low-charge e-scooters instead of visiting them scattered in 12 nodes. Then, the upper level of
the problem, which is the routing problem of the recharging truck and will be studied in a further
step of this research.

(a) Discritizing the operating zone (TUD) (b) Optimal low-charge drop-off locations

Figure 1: An overview of zoning and optimal low-charge drop-off location

4 Conclusions

This study addressed one of the operational challenges faced by shared electric scooters (e-scooter).
In this study, we propose a data-driven approach to dynamically define designated drop-off areas
for low-charge e-scooters by capturing the spatial and temporal characteristics of the e-scooters and
potential drop-off zones. A simulated data set of 30 e-scooters in TU Delft campus area is used.
The results suggest that the low-charge e-scooters can be consolidated in three drop-off locations
among 37 potential zones over 8 working hours. By adopting this approach, the average deviation
in distance of e-scooters from their intended endpoint is found to be 114 meters, a distance that
is generally considered to be within the range of what is typically considered suitable for walking
distance.

One of the significant advantages of our approach is the optimization of spatial usage by e-scooters,
which is particularly crucial for low-charge e-scooters. Furthermore, our model ensures that the
travel of the e-scooter to the suggested drop-off zone is feasible in terms of the deviation from
the destination and its state of charge after performing the trip. Moreover, defining consolidated
low-charge drop-off zones out of a discrete space of operating area can have a considerable im-
pact on minimizing the traveling distance of the charging truck and decreasing the computational
complexity of solving the model in continuous space. Overall, the approach of limiting visiting
nodes to recharge low-charge e-scooters through consolidating can lead to a reduction in opera-
tional costs and improved system performance in shared micromobility systems. The subsequent
routing problem of the charging truck can further optimize the recharging operations and enhance
the overall efficiency of the system.
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Table 1: Overview of the studied sample and selected drop-off zones

Time
step

e-scooter
id

low-charge
e-scooter
location

The SOC before
trip to drop-off
zone (%)

Selected
drop-off
zone

The SOC after
trip to drop-off
zone (%)

19 3 9 24.4 14 23.2
25 27 24.0 20 22.9

20 16 12 24.5 14 22.8
21 6 3 24.4 3 23.9
22 23 outside 24.4 14 21.4
23 0 9 24.4 14 21.3

24
10 outside 24.6 3 22.3
19 20 24.8 20 24.4
22 7 24.3 20 21.3

25 20 23 24.8 20 22.9
27 29 0 24.8 20 22.9
30 17 19 24.4 3 23.4
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