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SUMMARY (147 WORDS) 

Improving opportunities for bicycle parking is essential for promoting cycling. However, there is 

a lack of approaches for predicting the demand for bicycle parking based on the facility type and 

the facility's location. Considering both during planning could help improve bicycle parking 

according to user needs. This is particularly applicable when cyclists face several parking options, 

such as on university campuses, as in our case study. The paper presents a stated preference-based 

model, which was additionally calibrated using bicycle parking count data. 

Considering facility types improves the model fit substantially. Furthermore, the stated 

preference-based, original model underestimates the sensitivity to walking distances between 

facilities and buildings. When cyclists can choose between multiple parking facilities, it is critical 

to consider walking distances to realistically predict the demand for bicycle parking facilities. 

This confirms previous findings, that positioning parking facilities close to destinations is 

essential for attractive parking infrastructure. 
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SHORT PAPER (2,842 WORDS WITHOUT TABLES) 

1. INTRODUCTION 

Improving bicycle parking infrastructure is, in addition to measures for moving bicycle traffic, 

essential to promote cycling (Heinen and Buehler, 2019). Even though many previous studies 

analyzed bicycle parking behavior and preferences, research does not yet cover modeling the 

demand for single facilities considering facility type and position. We present a model for bicycle 

parking facility demand at RWTH Aachen University, one of the largest technical universities in 

Germany (45.000 students, 8.000 employees). We model bicycle parking behavior based on a 

stated preference experiment among RWTH students and staff, focusing on privately owned 

bicycles. Specifically, we analyze to which degree the following factors are relevant for the 

prediction of bicycle parking demand: 

 

1. Type of parking facility 

2. Cycling detour (additional cycling distance to access the parking facility compared to 

parking the bicycle directly at the destination building entrance) 

3. Walking distance between parking facility and destination (building entrance) 

 

First, we review previous studies regarding bicycle parking before we describe our method, 

present our results, discuss them, and draw a conclusion. 
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2. REVIEW 

Promoting cycling is one approach to increase the sustainability of mobility, especially in dense 

urban areas. One way is the improvement of bicycle parking facilities. For a general review of 

bicycle parking preferences and behavior, particularly at the workplace, we refer to Heinen and 

Buehler (2019). 

Studies show that improving parking facilities increases the probability of commuting by bicycle. 

Several studies found a strong impact (Bueno et al., 2017; Hunt & Abraham, 2007; Noland & 

Kunreuther, 1995), while others only estimated a low or even statistically insignificant one 

(Handy & Xing, 2011; Stinson & Bhat, 2004). Furthermore, research showed that cyclists prefer 

sheds over parking racks (Lusk et al., 2014; Moskovitz & Wheeler, 2011; Yuan et al., 2017).  

Less literature focuses on the influence of parking facility location-related factors. E.g., Molin 

and Maat (2015) found that the utility of bicycle parking facilities decreases when walking time 

increases. Papers and guidelines recommend short distances between parking facilities and 

buildings because users otherwise do 'fly parking' at facilities not intended for bicycle parking 

(Dufour, 2010; FGSV, 2012; Gamman et al., 2004; Larsen, 2015). 

 

Previous models predicting the parking demand do not focus on single facilities and their 

attributes as in our paper, e.g.: 

 

• Xu et al. (2012) developed a model for a university campus based on time series and 

attraction rates per building. 

• Pfaffenbichler and Brezina (2016) analyzed the demand for public bicycle parking 

facilities in Vienna based on mode share and differentiating city districts, but not single 

facilities. 

• Veillette et al. (2018) modeled the demand for bicycle parking on the grid cell level for 

Québec city. 

3.  METHODOLOGY 

Figure 1 shows our approach to model bicycle parking choices. Firstly, we generated a synthetic 

university student and employee population commuting by bicycle based on mobility data and 

RWTH statistics. Hence, our total demand for bicycle parking includes the number of relevant 

students and employees per building. 

 

Secondly, we calculated cycling detours and walking distances from parking facilities to the 

building entrances of their destination using a GIS. Thirdly, we used a mixed logit model to 

analyze a stated preference experiment. Fourthly, we applied the model to the synthetic population 

of bicycle commuters in order to predict their choice of bicycle parking and, thus, the total demand 

for bicycle parking per facility. Fifthly, we compared the predicted bicycle parking occupancy 

with bicycle parking count data. Finally, based on discrepancies between predicted and measured 

occupancy rates, we returned to the model and calibrated model parameters to reflect real bicycle 

parking behavior more adequately. 
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Figure 1: Model overview (own illustration) 

Synthetic student and employee bicycle commuter population 

In order to apply our model to the RWTH campus, we required a synthetic bicycle commuter 

population including a) group affiliation (students, professors, scientific employees, 

administrative and technical staff (ATS)), b) geographic direction of residential location (i.e., 

origin of commute trip) and c) building of work or study place (i.e., destination of commute trip). 

We used the results of a university mobility survey (n = 3,841) mailed out to all students and 

employees to generate the cycling commuters and assigned them by space usage data to buildings. 

Stated preference experiment 

For our analysis, we use the results of a web-based stated preference experiment conducted among 

RWTH students and employees in July 2022 (n = 2960). In this experiment, participants had to 

choose one of the following alternatives to park their bicycle: 

 

• indoor parking in the building of their place of work respectively study (if possible in the 

status quo) 

• a traffic sign pole representing 'fly parking' 

• uncovered parking rack 

• covered parking rack 

• bicycle parking station 

 

These alternatives were associated with varying cycling detours, walking distances, and prices, 

enabling us to analyze the attributes' influence with a mixed logit model using the R package 

Apollo (Hess & Palma, 2022). 

Table 1 shows the models' coefficients for different facility types, taking the interactions with the 

resale value of the bicycle (RV) and group affiliation (scientific employees (reference category), 

students, professors, and ATS) into account. 

 

Overall, the results show that – while there are differences between the various groups – the type 

of parking facility, whether it is covered or not, and the walking distance matter to cyclists. Our 

later findings in this paper will support these results, where we compare predicted and real bicycle 

parking on the RWTH university campus. However, the stated preference model also indicates 

that cycling detours significantly influence the probability of choosing a parking facility. Later 

on, our application to the campus will not confirm this finding. 
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Table 1: Coefficients mixed logit model 

  Est. Std. err. t-ratio p-value 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝝁(𝜷) -2.940 0.299 -9.828 <2E-12 

𝝈(𝜷) 5.146 0.160 32.237 <2E-12 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝜷 -2.419 0.271 -8.929 <2E-12 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝐴𝑇𝑆 𝜷 1.784 0.375 4.758 1.96E-06 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑅𝑉 > 500 € 𝜷 1.740 0.300 5.808 6.32E-09 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑅𝑉 > 1,000 € 𝜷 1.304 0.441 2.955 0.003 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑁𝑜 𝑑𝑒𝑠𝑔𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝜷 -0.965 0.287 -3.359 7.82E-04 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 𝑖𝑛 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝜷 -0.894 0.272 -3.282 0.001 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 𝑎𝑡 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝜷 -0.936 0.420 -2.230 0.026 

𝑃𝑜𝑙𝑒 𝑜𝑓 𝑎 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑖𝑔𝑛 𝝁(𝜷) -2.032 0.075 -26.953 <2E-12 

𝝈(𝜷) 1.945 0.072 26.972 <2E-12 

𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑟𝑎𝑐𝑘 𝝁(𝜷) fixed 

𝝈(𝜷) 1.381 0.065 21.104 <2E-12 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑟𝑎𝑐𝑘 𝝁(𝜷) 0.656 0.066 9.899 <2E-12 

𝝈(𝜷) -1.547 0.065 -23.936 <2E-12 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑟𝑎𝑐𝑘𝑅𝑉 > 500 € 𝜷 0.874 0.104 8.368 <2E-12 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝝁(𝜷) 0.876 0.164 5.349 8.86E-08 

𝝈(𝜷) 2.864 0.085 33.552 <2E-12 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝜷 -0.495 0.181 -2.733 0.006 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑇𝑆 𝜷 -0.620 0.333 -1.861 0.063 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑉 > 500 € 𝜷 1.489 0.199 7.488 6.99E-14 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑉 > 1,000 € 𝜷 1.258 0.254 4.961 7.03E-07 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡.  𝑡𝑜 𝑅𝑊𝑇𝐻 [𝑘𝑚] 𝜷 0.045 0.018 2.551 0.011 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟 [𝑚] 𝜷 -0.006 3.21E-04 -19.104 <2E-12 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟𝑆𝑡𝑢𝑑𝑒𝑛𝑡[𝑚] 𝜷 -0.002 3.93E-04 -5.840 5.23E-09 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟[𝑚] 𝜷 -0.002 0.001 -2.868 0.004 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟𝐴𝑇𝑆[𝑚] 𝜷 0.001 0.001 1.950 0.051 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝑚] 𝜷 -0.016 4.23E-04 -38.871 <2E-12 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡[𝑚] 𝜷 -0.002 0.001 -4.380 1.19E-05 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟[𝑚] 𝜷 0.004 0.001 3.147 0.002 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑇𝑆[𝑚] 𝜷 0.006 0.001 8.588 <2E-12 

Parking facilitiy data 

In the stated preference experiment, we only included u-racks, also known as Sheffield racks, 

allowing for locking the bike frame to the stand. However, several facilities on the campus only 

allow locking the front wheel ('front racks'). To consider a higher theft risk, we applied the 
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coefficient for 'pole of a traffic sign' to them; for covered front racks, we used the coefficients for 

'covered bicycle parking rack' on top. 

We also aggregated the demand for close together located parking facilities of the same type. As 

a result, the number of analyzed facilities decreased from 163 to 99 shown in Table 2. 

 

Table 2: Bicycle parking facilities in our analysis 

 
Front rack Bicycle parking rack Bicycle 

parking 
station 

 
Uncovered Covered Uncovered Covered 

Number of aggregated 
facilities 

15 2 73 8 1 

Total capacity (bicycle 
parking spaces) 

650 15 3814 452 543 

 

To calculate the cycling detour to reach each facility, we measured the beeline distance between 

each geographic center of the residential addresses (trip origin) and parking facilities. Then, we 

calculated the distance between the trip origin and the building entrance (trip destination). The 

difference between them defines the (positive or negative) cycling detour. (This simple approach 

led to unrealistic results for eleven buildings and eight parking facilities, and we manually 

measured cycling detours with aerial images for these instances.) We used the beeline distance 

between the parking facility and the building entrance to determine the walking distance. Further, 

we assumed that poles of traffic signs (i.e., 'fly parking') at a walking distance of 60 m are 

available at each building. 

Count data 

We counted the occupancy of parking facilities at RWTH primarily on Thursday, 28.04.2022, in 

the morning (10-12) and afternoon (13-15), during a week with changing weather conditions. The 

counting phase took place shortly after the expiration of COVID-19 restrictions when many 

employees were still working from home, and many lectures and exercises were still web-based. 

Furthermore, our model does not consider temporal overlap. Therefore, we scaled our predicted 

demand by the quotient of counted and predicted demand, around one-third. Because the morning 

and afternoon results are similar, we only show the results for the afternoon. 

Calibration 

We used the count data to assess to which degree our prediction realistically reflects bicycle 

parking behavior. In the process, we calibrated the model by multiplying the cycling detour and 

the walking distance by factors (𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟, 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). We analyzed values between 0 

and 5 regarding the correlation and the root mean square error (RMSE). The model names 

represent the factors, e.g., C1W3 means that 𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟 = 1 and 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 3. 

4. RESULTS 

Apart from several models with different 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟, we evaluated a base 

model, as shown in Table 3. The base model assigns all demand generated by buildings to the 

closest bicycle parking facility, already explaining more than half of our demand differences 

between facilities. While the model based on the stated preference experiment using the calculated 
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beelines once has a lower correlation than the base model, increasing the 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 improves 

the correlation to the counts up to two-thirds and reduces the RMSE. However, the calibration of 

the 𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟 showed no significant contribution for the prediction quality of our model. 

 

Table 3: Model accuracy 

Model 
Base-

model 
C1

W0 
C1

W1 
C1

W2 

C1

W3 
C1

W4 
C1

W5 
C0

W3 
C2 

W3 
C3 

W3 
C4 

W3 
C5 

W3 

𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 
𝑑𝑒𝑡𝑜𝑢𝑟

 - 1 1 1 1 1 1 0 2 3 4 5 

𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 ∞ 0 1 2 3 4 5 3 3 3 3 3 

Correl. 0.55 0.18 0.51 0.63 0.66 0.66 0.65 0.66 0.66 0.65 0.63 0.61 

RMSE 22 33 22 19 18 19 19 18 19 10 19 20 

 

In the following, we analyze the predictions for the C1W3 model. As Table 4 shows, the model 

overestimates the demand for covered parking racks and, in contrast, substantially underestimates 

the demand for front racks. 

 

Table 4: Counted and modeled demand after calibration (C1W3) 

 
Indoor 

parking 

Pole of 

a traffic 

sign 

Front rack Parking rack Bicycle 

parking 

station 
Uncovered Covered Uncovered Covered 

Predicted 806 747 72 7 1,536 286 32 

Counted - - 132 11 1,504 201 85 

Ratio - - 0.55 0.64 1.02 1.42 0.38 

 

Regarding the facilities' geographic locations, Figure 3 shows some underpredictions due to 

missing demand data for specific buildings based on a lack of space usage data. For some places, 

an overprediction of the demand is also explainable. For example, the RWTH guest houses have 

a diverging mobility behavior compared to other university buildings, causing less demand than 

predicted. Furthermore, some locations with overpredicted demand have other facilities of the 

same or another facility type nearby. Taking only the closest facility of each type into account 

might cause prediction inaccuracies, and additional aggregation would be one solution. 

 

Figure 2: Predicted and counted demand per parking facility (C1W3) 
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Figure 3: Ratio of predicted and counted demand per parking facility (C1W3) 

 

5. DISCUSSION 

Our findings show that the facility type is relevant for predicting the demand for bicycle parking 

because the consideration increases the correlation to 0.66. However, that almost three-fourths 

were uncovered parking racks might explain this limited increase in the correlation. In many 

cases, preferences slightly influence the parking choice because cyclists do not have the 

opportunity to choose between different facility types realistically. 

 

According to our findings, the inclusion of cycling detours does not contribute to improving 

parking demand prediction. One explanation is that, in line with existing guidelines, most bicycle 

parking facilities are placed between the points of access to the respective property from public 

streets and building entrances (FGSV, 2012). Consequently, cycling detours hardly ever carry any 

weight, as cyclists usually arrive from the direction in which the parking facility is located. 

Nevertheless, we believe that our stated preference experiment's coefficients are proper. However, 

calculating exact cycling detours is complex, and their effect is limited compared to other factors 

such as walking distances and facility type. Finally, as close to the destination-located parking 

facilities have short cycling detours and walking distances in most cases, the correlation between 

both factors explains why considering cycling detours does not contribute substantially to the 

explanatory power of the prediction. 

 

On the contrary, walking distances between parking facilities and trip destinations turned out to 

be more influential than our stated preference experiment suggested. One reason is that walking 

distances in the real-world built environment are longer than the beeline. While we assumed this 

would lead to a factor with a maximum of 1.5, we estimated a value of 3, optimizing our model. 

On average, real-world cyclists may not appreciate good parking facilities as much as our 

experiment participants. We deem it likely that survey participation was biased towards 

individuals with heightened interest in better parking facilities; one possible reason is that they 
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own expensive (e-)bikes. Therefore, survey participants may have been more willing to walk for 

better parking. This self-selection bias might also explain why the stated preference experiment 

overestimates the demand for low-quality front racks. However, our results underline the 

importance of good positioning of parking facilities. Otherwise, cyclists choose other options as 

street furniture, initially not designed for that purpose (FGSV, 2012; Gamman et al., 2004). 

6. CONCLUSIONS 

Our findings show that including the type of parking facility and the walking distances to building 

entrances improves the prediction of bicycle parking demand relative to a model solely based on 

the shortest distance to building entrances substantially. In this study, a stated preference 

experiment provided the user preferences constituting the basis for such an improved model. 

Bicycle parking counts contributed real-world bicycle parking data, which we used to perform a 

reality check of our model and to calibrate it to real-world circumstances. 

There were some issues in our data that need to be taken into account. Firstly, our RWTH 

university mobility survey results indicate a higher demand for bicycle parking than counted. 

Abating COVID lockdown phenomena (e.g., a high proportion of people working and studying 

from home) and selectivity in our mobility survey may have contributed to this. Secondly, our 

results indicate a discrepancy between stated preference data-based parking preferences and real-

world parking behavior. Hence, for further improvement of the approach presented in this paper, 

updated data collection and an in-depth investigation of the data discrepancies would be desirable. 

Another improvement of the approach would be the inclusion of effects induced because of 

occupancy, i.e., the question of to which degree demand for bicycle parking is diverted to other 

facilities if the desired facility is (completely) occupied. Due to low occupancy during our data 

collection period, we could not include these effects. 

Nevertheless, we are confident that our model represents a substantial improvement in predicting 

the demand for bicycle parking compared to preexisting approaches. It is acknowledged that 

different groups of cyclists have diverging requirements regarding parking infrastructure 

concerning facility type and proximity to the destination. Simplistic models are not able to take 

account of that. Moreover, a model such as ours, which accounts for various attributes, may also 

be used to design a multi-optional bicycle parking facility layout that maximizes user benefit. 

Therefore, we believe that approaches such as ours will be increasingly needed to assess changes 

in the bicycle parking infrastructure and optimize extension strategies for bicycle parking in the 

context of promoting bicycle travel, e.g., regarding growing shares of e-bikes. 
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