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SHORT SUMMARY 

Discrete choice models (DCM) are widely used in travel demand analysis to understand and 
predict choice behaviors. However, a priori specification of the utility functions is required for 
model estimation, leading to subjectivity and potential inaccuracies. Machine learning (ML) 
approaches have emerged as a promising solution but lack interpretability and may not capture 
expected relationships. This study proposes a framework that supports the development of 
interpretable models that incorporate domain knowledge and prior beliefs. The framework 
includes pseudo data samples and a loss function to measure relationship fulfillment. This 
approach combines the flexibility of ML structures with econometrics and interpretable 
behavioral analysis, improving model interpretability. The proposed framework's potential is 
demonstrated through a case study, providing a promising avenue for the advancement of data-
driven approaches in DCM. 
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1. INTRODUCTION 

Discrete choice models (DCMs) are used in travel demand analysis to understand individuals' 
decision-making processes. Most DCMs are formulated as random utility models (RUMs) that 
assume individuals make decisions based on maximizing utility. However, specifying a plausible 
utility model that captures these complexities is a challenging task (Torres et al., 2011). Recently, 
data-driven approaches using machine learning (ML) methods have emerged as a promising 
avenue to overcome the limitations of RUM specifications. Deep neural networks (DNNs) are an 
increasingly popular data-driven approach that has shown higher prediction accuracy in many 
tasks. 

Unlike RUM, DNN models require essentially no a priori beliefs about the nature of the true 
underlying relationships among variables. DNN models can find complex non-linear 
specifications, and their high flexibility means that the role of the analyst is minimized. However, 
their “black box” form limits their interpretability, and the extracted relationships may not be 
consistent with domain knowledge (Van Cranenburgh et al., 2021; Wang et al., 2020b). 

To address these limitations, some studies combine RUM and ML. For example, Sifringer et al., 
(2020, 2018) added a DNN-learned utility term to the traditional interpretable RUM utility 
function. This improves the model's fit to the data but the unbounded DNN term may dominate 
and prevent interpretation. The decision on which variables enter each part is subjective. 
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Another approach that was proposed by Wang et al., (2020a) is to use an alternative-specific 
utility deep neural network (ASU-DNN) architecture, which maintains separate utility functions 
for each alternative that depend only on its own attributes, resembling RUM. The model is more 
interpretable compared to fully connected DNNs and achieved comparable or better fit to the data. 
However, it still might suffer from unreasonable relationships among explanatory variables and 
choices. 

Current methods for interpretability lack control over the relationships among variables and 
choices, making them inconsistent with domain knowledge and limiting their application in 
predicting new policies (Alwosheel et al., 2021, 2019). This study proposes a framework that 
incorporates domain knowledge through constraints and a loss function to penalize violations. 
The proposed approach preserves flexibility and can be implemented on any model architecture, 
providing control over the model's behavior for better travel choice predictions. 

2. METHODOLOGY 

The idea behind incorporating domain knowledge in DNNs involves augmenting the data given 
to the model and modifying the loss function that the model optimizes. To achieve this, additional 
data, termed pseudo data, is generated to hold the targeted knowledge that the model is expected 
to capture. The loss function is then formulated to include terms that use this data, in combination 
with the original model loss function, such as the negative log-likelihood. The additional loss 
terms measure the extent to which the trained model is consistent with the domain knowledge. 
 
The overall framework for incorporating domain knowledge into DNNs is shown in Figure 1 and 
is independent of the model structure, allowing for seamless integration with existing DNN 
architectures. The model is trained on two sets of inputs: the originally available observed data 
and domain knowledge, which is mathematically formulated as a set of constraints on the 
outcomes of the trained model. The observed data represents the available dataset collected, 
including socio-economic characteristics of decision makers, attributes of the alternatives, and 
choices. The domain knowledge represents the knowledge that the modeler wants to incorporate 
into the model and expects to be captured (e.g., directions of sensitivities). 
 
In this work, the modeler's prior expectations are related to signs of the effects of an alternative’s 
attributes on its own utility. For example, these may be negative effects of mode travel times and 
costs on the utilities of these modes. In this case , the model is constrained to learn a monotonically 
decreasing probability of choosing an alternative with respect to its travel time and cost and, 
consequently, monotonically increasing probabilities of choosing the remaining alternatives. 
 
Consider a training set consists of 𝑁 samples {(𝑥! , 𝑦!)}, 𝑖 = 1,… ,𝑁, where 𝑥! is a feature vector 
in 𝑥 ∈ ℝ𝒟, and 𝑦! is the discrete choice among 𝒞 alternatives, 𝑦! ∈ {1, . . , 𝒞}. Let 𝑝#(𝑥!) be the 
probability of choosing alternative 𝑐 given input 𝑥!, and 𝑥![𝑚]  is the value of feature 𝑚 in the 
feature vector. The estimated model is considered to be monotonically increasing in 𝑝#with 
respect to feature 𝑚 if 𝑝#(𝑥!) ≥ 𝑝#7𝑥$8 for any two feature vectors 𝑥! , 𝑥$, such that 𝑥![𝑚] ≥ 𝑥$[𝑚] 
and 𝑥![ℎ] = 𝑥$[ℎ], for all ℎ ∈ 𝒟\𝑚. The opposite applies for decreasing monotonicity. The rest 
of the components are described as follows. 
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Figure 1. Overall framework for incorporating domain knowledge 

Generating Pseudo Data 

Following monotonicity constraints above, pseudo data can be generated as pairs of samples to 
numerically approximate the probabilities' derivatives that are constrained. For each monotonicity 
constraint with respect to a feature 𝑚, 𝐾 pseudo samples are generated uniformly along the region 
values of that feature 𝑥%,'∗ . Each pseudo sample is then paired with another pseudo one, such that 
the second pseudo sample has a positive incremental change applied to feature 𝑚. The 
relationship required for an increasing monotonicity constraint of probability of choosing 
alternative 𝑐 with respect to feature 𝑚 is 𝑝#7𝑥%,)∗ 8 − 𝑝#7𝑥%,'∗ 8 ≥ 0. 
 
The pseudo data does not require labels (i.e., chosen alternatives), as they are only used for 
capturing domain knowledge, not for predicting the chosen alternative. This ability to generate 
pseudo samples enhances the model in three ways: 
 

1. When the dataset is small, the pseudo dataset helps increase the dataset size to learn the 
model's parameters.  

2. When the input feature region is imperfectly covered, the pseudo data helps fill gaps and 
enforce the model to learn along the full range of possible values. 

3. Generating pseudo data outside the range of current values for specific features helps 
enforcing better learning, hence enabling extrapolation in the outer regions (i.e., unseen 
scenarios). 

Loss Function 

The loss function includes two components: prediction loss and domain knowledge loss. The 
prediction loss quantifies the accuracy of predictions and can be calculated for example using the 
negative log-likelihood (ℒ*++) method commonly used in RUMs. This calculation is performed 
only for samples with observed choices and is represented by the following formula: 

ℒ*++ =	−	∑ ∑ 𝑔!,# ⋅ 𝑙𝑜𝑔7𝑝!,#8	#∈𝒞
*
!.' 																																												  (1) 

Where 𝑔!,# equals 1 if alternative 𝑐 is chosen by individual 𝑖 and 0 otherwise. 
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The domain knowledge loss measures the violation of monotonicity constraints on the probability 
of choosing alternative 𝑐 with respect to feature 𝑚. This is determined using pseudo sample pairs 
that estimate the derivatives of the probabilities, represented by the following formula: 

ℒ#,/ =	∑ max I0, 𝑑#,/ ⋅ 0!
12",$

∗ 340!12",&
∗ 3

∆2'∗
K6

%.' 																																					  (2) 
Where 𝑑#,/ equals 1 if the probability of choosing alternative 𝑐 with respect to feature 𝑚 should 
be increasing and -1 otherwise. 
 
If it is assumed that when the probability of choosing alternative 𝑐 with respect to feature 𝑚 is in 
one direction, the probability of choosing other alternatives should be in the opposite direction, 
the total loss to be minimized can be expressed as follows: 

minℒ7879: =	ℒ*++ + ∑ ∑ 𝑤#,/ ⋅#∈𝒞/∈; 	ℒ#,/																																					  (3) 
Where 𝑀 represents the indices of the features that constrain the probabilities, and 𝑤#,/ represents 
the weight of each constraint violation penalty. 

Model Training 

The training process is illustrated in Figure 2. Observed data, represented as vector 𝐱, and a vector 
of pseudo sample pairs 𝐱∗ = R7𝑥','∗ , 𝑥',)∗ 8, … , 7𝑥%,'∗ , 𝑥%,'∗ 8S are fed into the model. The total loss, 
calculated as a combination of the prediction loss from the observed samples 𝐱 and the domain 
knowledge loss from the pseudo data 𝐱∗, is minimized using the backpropagation technique. This 
process continues iteratively until convergence is achieved. 
 

 
Figure 2. Model training process 

3. RESULTS AND DISCUSSION 

The methodology outlined above was applied to a mode choice dataset to assess the potential of 
incorporating domain knowledge in a DNN model and examine the impact of such knowledge on 
the resulting economic information. 
 
Dataset 
 
The experiment was based on the Swissmetro dataset, which is a publicly available stated 
preference survey collected in Switzerland in 1998 (Bierlaire et al., 2001). Participants were asked 
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to provide information regarding their preferred mode of transportation between the new 
Swissmetro (SM) mode, car, and train. Travel time and cost were considered as the key 
descriptive variables for each alternative mode. Observations with missing alternatives or outliers 
were removed. The dataset was then divided into training, validation, and testing sets in the ratio 
of 60:20:20. 
 
Experimental Design 
 
The proposed methodology was implemented on two model architectures: DNN and ASU-DNN. 
The DNN model was an off-the-shelf model, while the ASU-DNN model was proposed by Wang 
et al., (2020a) and calculates alternative-specific utilities. Both models were estimated in both an 
unconstrained and a constrained (i.e., with domain knowledge) version. The constrained models 
are referred to as C-DNN and C-ASU-DNN, respectively. In addition, a Multinomial Logit 
(MNL) model was also estimated for comparison.  
 
The domain knowledge incorporated in the constrained models includes negative own-
sensitivities of choice probability to travel time and cost and positive cross-sensitivities. All 
constraints are incorporated simultaneously. The models' negative log-likelihood and prediction 
accuracy were measured on each of the datasets. Predicted market shares were also calculated for 
each model. Choice probabilities with respect to each feature were then presented to demonstrate 
the fulfillment of domain knowledge. 
 
Results 
 
Prediction performance 
 
Table 1 presents the negative log-likelihood (NLL) and accuracy of each estimated model. The 
results indicate that the DNN model provides the best NLL and accuracy, thanks to its high ability 
of empirical fit to data. The ASU-DNN also demonstrates good fit to data. When domain 
knowledge is introduced, constrained models become less flexible and achieve lower fit to data 
compared to unconstrained ones. This is expected since the introduction of constraints to the 
models limits the search space for the optimal fit and might restrict the flexibility of the model. 
Nonetheless, the decrease in accuracy in testing is only 2.1%. 
 

Table 1. Negative log-likelihood (NLL) and prediction accuracy 
 
 
 
 
 
 
 
 
 
 
Market shares 
 
While prediction accuracy relates to predicting choices at the level of individuals, transportation 
policy planners are mainly interested in prediction at the market level. Table 2 shows the predicted 
market shares by the different models and the root mean square error (RMSE) in each model. The 

  Training Testing 
Model NLL Acc [%] NLL Acc [%] 

DNN 3182 70.5 1133 69.2 
Constrained DNN 3336 68.7 1189 67.1 
ASU-DNN 3438 68.3 1188 67.7 
Constrained ASU-DNN 3577 66.7 1235 65.6 
MNL 3508 67.9 1209 66.2 
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constrained models provide better market shares in terms of RMSE in the training set compared 
to the unconstrained models but perform worse in the testing set. The DNN and ASU-DNN 
models outperform the MNL model in terms of RMSE in the testing set, which was guaranteed 
to provide exact market shares in training. Although the constrained models have worse 
performance than the unconstrained models, the RMSE values are within a range of 2.4% and are 
not much different from the observed shares in the sample. 
 

Table 2. Market shares of travel modes 

Training set 

  DNN C-DNN ASU-DNN C-ASU-DNN MNL Observed  
Train 5.5% 6.0% 7.6% 4.6% 6.2% 6.2% 
SM 55.0% 58.3% 54.7% 56.3% 56.9% 56.9% 
Car 39.5% 35.7% 37.7% 39.1% 36.9% 36.9% 

RMSE 1.9% 1.1% 1.6% 1.6% 0%  

       
Testing set 

  DNN C-DNN ASU-DNN C-ASU-DNN MNL Observed  
Train 5.4% 6.1% 7.5% 4.5% 6.2% 7.4% 
SM 55.9% 58.7% 55.2% 56.8% 57.7% 55.4% 
Car 38.7% 35.1% 37.4% 38.6% 36.1% 37.2% 

RMSE 1.5% 2.4% 0.2% 2.0% 1.6%  

 
 
Choice probabilities 
 
To demonstrate the consistency with expected domain knowledge, choice probability functions 
provided by the different models were calculated as a function of each of the six variables. They 
were calculated using the partial dependence plots (PDP) method which calculates choice 
probabilities for every possible value of the variable for each observation (Friedman, 2001). Three 
of them are illustrated in Figure 3-5. In remaining three, the constrained models satisfied the 
constraints while unconstrained ones did not. They are not presented due to paper length 
constraints. 
 
The estimated coefficients in the MNL are with the expected sign (i.e., negative coefficients of 
travel time and cost in all utility functions), therefore, the directions of choice probabilities are 
consistent with domain knowledge as can be seen in Figure 3-5. However, choice probabilities 
may not always be consistent with domain knowledge when derived from unconstrained models, 
even in ASU-DNN where utilities are calculated independently from the others following RUM. 
This inconsistency could be restrained when domain knowledge is incorporated into the models. 
 
For example, Figure 3 presents choice probabilities as a function of train travel time. It is 
expected that SM and car shares would increase at the expense of the decrease in train shares, as 
train travel time increases. Figure 3(a) shows that DNN, while the most accurate, reveals 
unreasonable decreasing of SM choice probability. This finding is unreasonable since train 
becomes less attractive, and SM shares should not be negatively affected. This knowledge is 
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considered in C-DNN, and choice probabilities become more reasonable as illustrated in Figure 
3(b). The rest of the models behave as expected. 
 

 
Figure 3. Alternatives’ choice probabilities as a function of train travel time 

 
In Figure 4, choice probabilities are calculated as a function of train cost. It is expected that SM 
and car shares would increase at the expense of the decrease in train shares, as train cost increases. 
However, DNN fulfills this expectation only up to about 150 CHF train cost, as shown in Figure 
4(a). At this point, SM shares increase drastically at the expense of car shares, which start 
decreasing. This is unexpected since increased train cost must not negatively affect car shares. At 
worst, car shares would not change (i.e., would not increase), and train users would shift only to 
SM. Another unexpected finding can be found in the ASU-DNN model in Figure 4(d). Around 
a train cost of 150 CHF, all choice probabilities switch directions. Both models were corrected by 
incorporating knowledge, as shown in Figure 4(b) and Figure 4(e) for C-DNN and C-ASU-
DNN, respectively. 

 
Figure 4. Alternatives’ choice probabilities as a function of train cost 
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Figure 5 presents choice probabilities as a function of SM cost, where train and car shares are 
expected to increase at the expense of decrease in SM shares. In Figure 5(a), DNN fails to fulfill 
this knowledge at costs above 170 CHF, where car shares start decreasing, as if higher SM cost 
makes using the car less attractive. Although domain knowledge was incorporated, C-DNN was 
not corrected. In ASU-DNN, however, all choice probabilities switch directions at 300 CHF SM 
cost, as illustrated in Figure 5(d), which had been overcome by incorporating knowledge, as 
shown in Figure 5(e). 
 

 
Figure 5. Alternatives’ choice probabilities as a function of SM cost 

 
In conclusion, while accurate, unconstrained models that rely solely on data may produce 
unreasonable interpretations of choice probabilities, making them unsuitable for use in policy-
making processes. The results obtained through the proposed methodology of incorporating 
domain knowledge into these models demonstrate the potential of achieving more interpretable 
results while still relying on data in a controllable manner. In C-DNN, only one constraint out of 
18 was not fulfilled (i.e., increasing car choice probability as a function of SM cost, Figure 5 (b)), 
whereas all constraints were fulfilled in C-ASU-DNN. While constraints may not always be fully 
satisfied, they can significantly enhance the models' consistency with domain knowledge, making 
them more useful for choice analysis and planning purposes. 

4. CONCLUSIONS 

This study addresses the limitations of uncontrollable DNN application in discrete choice 
analysis. Incorporating domain knowledge into DNN is crucial for its interpretation and usability. 
The proposed framework enhances model consistency with domain knowledge by introducing 
constraints, making it easy to implement on different architectures. The case study on Swissmetro 
dataset demonstrates a tradeoff between accuracy and interpretability, showing promising results 
in combining domain knowledge with DNN models for choice analysis. Future research could 
explore the proposed framework's generalizability to other discrete choice modeling problems 
and datasets. The proposed framework could also be extended to incorporate other types of 
domain knowledge, such as prior distributions on model parameters or constraints on the 
functional form of the model. 
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