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Short summary

Speed and reliability are the keys to high quality on-demand meal delivery service. The rebalancing
of couriers locations according to future demand remains an operational challenge in the indus-
try. This study proposes an adaptive framework to identify and predict the near-future demand
hotspots, utilizing the semi real-time predictive information as input. This framework provides
demand insights to assist meal delivery platforms in making operational forward-looking resource-
demand rebalancing decisions in real time, such as fleet management and demand management.
To generate fast and accurate demand forecasting, we incorporate time series features and data-
driven machine learning methods to create an adaptive forecasting approach. We create a dynamic
demand hotspot clustering algorithm which takes predictive and geographic information as input.
In the case study, our predictive forecasting model outperforms the time series and deep learning
benchmarks in deterministic forecasting. The hotspots clustering performance is improved by using
probabilistic predictive input.
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1 Introduction

The on-demand meal delivery business has created a global market valued at over 150 billion dol-
lars. However, competition among on-demand meal delivery service platforms (OMDPs), such as
DoorDash, Uber, and Grubhub, is intense. Good delivery service quality is essential for maintain-
ing high customer satisfaction, which improves customer loyalty in the long run. Delivery speed
and reliability are the key factors in determining service quality. To generate higher profits while
providing high-quality service, the platform should operate its limited courier resource efficiently.
Various studies have been conducted to enhance the delivery efficiency of OMDPs. Reyes et al.
(2018) and Yildiz & Savelsbergh (2019) study the meal delivery routing problem (MDRP) to min-
imize the travel time. An anticipatory customer assignment strategy is proposed by Ulmer et al.
(2021) to study the stochastic dynamic pickup and delivery problem.
To operate efficiently, on-demand meal delivery service platforms should also act proactively in
responding to the dynamics of demand in the city. With a limited number of hired couriers,
platforms can strategically prioritize assigning couriers to areas with higher predicted demand in
the near future. By doing so, more couriers will be available in high-demand areas, reducing the
average waiting time for order pickups. To support real-time operational decisions, accurate and
fast-to-generate short-term demand predictions of the city are necessary. However, to the best of
our knowledge, little attention has been paid to short-term demand forecasting problem of OMDPs.
Hess et al. (2021) compare the performance of mainstream forecasting methods in generating
deterministic demand predictions per hour. In their case study, an exponential smoothing based
model achieves the best performance when a rich amount of historical data is available, while
random forecast regression outperforms the rest when the training data is limited.
This study has two main objectives. Firstly, we combine the benefits of both parametric time
series and data-driven methods to create a fast-to-generate forecasting approach for the demands
arising from different parts of the city in the next 15-minute. Secondly, we propose an adaptive
framework to identify and predict the next demand hotspots, utilizing the semi real-time predictive
informtion as inputs. Addressing these two objectives, we propose the dynamic demand hotspots
forecasting framework, which can be used by the platforms to proactively optimize their fleet and
demand management decisions in real-time.
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2 Methodology

In this study, we propose the novel dynamic demand hotspots forecasting framework to assist the
rebalancing decision-making of on-demand meal delivery platforms by predicting the areas with
higher demand in the next 15-minute interval. Our framework consists of two major steps. Firstly,
we generate demand predictions for different areas of the city. Then, we generate demand hotspot
clustering of the city utilizing the predictive outcomes and the geographic information of these
areas.
Compared to the forecasting for a longer time interval, short-term demand predictions are more
volatile and prone to fluctuations caused by latent events. Parametric time series models are good
at interpreting recent signals for forecasting, but they require manual effort for selecting suitable
parameters during training. On the other hand, non-parametric data-driven machine learning
models are able to capture the non-linear patterns in data and interpret the interactions between
features. To combine the advantages of both sides, we propose an adaptive forecasting approach
that recurrently applies lagged-dependent features to generate predictions, based on data-driven
machine learning models. Inspired by autoregression analysis, the lagged-dependent features are
the previous values of demand, e.g. yαt−i meaning the demand of area α from i time steps ago. In
our model, each time step is a 15-minute interval. To distinguish the regular hourly seasonality
and the unexpected temporal fluctuations of demand, we choose to include four lagged-dependent
features yαt−1, yαt−2, yαt−3, yαt−4, covering the demand information from the recent one hour. And we
adopt random forest regression (RF) and eXtreme Gradient Boosting (XGBoost) as the baseline
machine learning models. Their adaptive versions we create are called LD-RF and LD-XGBoost
respectively.
Although deterministic demand forecasting is the focus of many demand forecasting literature, the
determination of future hotspots might be benefit from probabilistic predictive information, which
provides distributional insight of demand. The probabilistic predictive information feature Ŷt we
adopt in the dynamic demand hotspot clustering framework is a weighted average of the 25%, 50%
and 75% quantile prediction vectors, Ŷi = 0.25 · Ŷi,0.25 + 0.5 · Ŷi,0.50 + 0.25 · Ŷi,0.75. The quantile
prediction vectors are provided by quantile regression forest (QRF) by Meinshausen & Ridgeway
(2006) or its adaptive version LD-QRF in this study.
Besides of the predictions, we also include the geographic features latitude and longitude of the
area centers as input to the clustering algorithm. Constrained K-means clustering proposed by
Bradley et al. (2000) is utilized to generate clusters of areas with a condition of no less than three
zones per cluster, where the optimal number of clusters is chosen between 3 to 6 based on the
highest mean silhouette coefficient.

3 Results and discussion

Data analysis and feature engineering

Our case study uses the meal order placement data of a city, which is collected from April 1st,
2020 to September 14th, 2020. Each instance contains the placement time, pickup and delivery
destination locations. The locations are hashed into hexagonal zones using Uber’s H3 geospatial
indexing system at a resolution level of 8. The average area per zone is 0.737 km2. We denote
the location of the restaurant as the pickup zone, and the location of delivery destination as the
destination zone. Our data covers 20 pickup zones and 50 destination zones.
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Figure 1: The average total number of received orders per hour for weekdays (i.e. Monday
to Thursday) and weekends (i.e. Friday to Sunday), the error bars represent standard
deviations.

Figure 2: The daily average total number of received orders for each pickup zone at whole
day, day shift, and evening shift respectively.

According to our data analysis, all days of the week exhibit a dual-peak demand pattern, which
shows the demand level is much higher around dinner time compared to lunch time. Also, Friday,
Saturday and Sunday attract more orders than other days in general. To distinguish this demand
difference we visualise the average number of orders received per hour during the week and on
weekends in Figure 1. We consider Friday to Sunday together as weekend days since the demand
on Friday evening is much closer to the patterns of weekend days. A higher demand level is showed
among the weekend group than the weekday group. Inspired by the within-day demand pattern,
we can further split a day into the day shift (10:30-17:00) and the evening shift (17:00-21:30). To
explore the demand level difference among pickup zones, we compare their daily average number of
orders received in Figure 2. We observe a variation in the relative demand levels between the day
and the evening shifts, indicating a change of comparative demand levels of the city throughout a
day.
In this case study, we are interested in predicting the near future demands in the city, i.e. the
aggregated amount of orders coming in the next 15 minutes from all the restaurants in each pickup
zone. The per 15-minute demands are the aggregated number orders for each pickup zone according
to the 44 different 15-minute time windows each day. We denote this target variable order demand
of pickup zone α at the ith time interval as yαi . To capture the within-day and within-week double-
seasonal demand patterns in data, we include the temporal features hour and day of a week. A
binary variable is adopted to indicate whether the date is a national holiday. Considering that
weather also affects the interests of customers in online meal ordering, we include three exogenous
weather features, namely the average temperature, precipitation amount and wind speed. The
weather features are solely time-dependent, implying that the values measured at the same time
are consistent across different zones.

Experimental design, evaluation metrics and baseline models

For model training, we use the first 21 weeks’ data (6468 samples) from the processed dataset.
And the predictions are generated for the last 1 week’s data (308 samples) in a one-step-ahead
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rolling window fashion. The predictions of each pickup zone are generated in parallel at each step
by the corresponding predictors.
The first forecasting experiment involves performing deterministic demand forecasting for the next
15-minute. To gain an overview of model performance, we report the accuracy of each subset
of data by properties ‘types of shift’ and ‘partition of week’. In addition to reporting the mean
prediction errors averaged from predictions for all the pickup zones, we are also interested in
comparing the individual prediction errors measured per pickup zone to inspect whether certain
type of pickup zones are consistently better predicted by a kind of predictor. We apply the
root-mean-squared error (RMSE) and mean absolute error (MAE) as the evaluation metrics for
deterministic forecasting. To investigate the gains in deterministic forecasting using the data-
driven lagged-dependent models, namely lagged-dependent regression forest (LD-RF) and lagged-
dependent XGBoost (LD-XGBoost), we include the vanilla regression forest (RF) and XGBoost
models as the baselines. Moreover, we also include Trigonometric, Box–Cox, Auto-Regressive-
Moving-Average, Trend, and Seasonality (TBATS) model proposed by De Livera et al. (2011) as the
conventional time series benchmark for its superiority in capturing complex seasonal patterns and
convenience in automatic hyperparameters tuning function. Additionally, we include a two-layer
Long short-term memory networks (LSTMs) as the deep learning benchmark, given its similarity
in recurrent feature processing to our lagged-dependent methods.
The second forecasting experiment concerns identifying the demand hotspots of the city in the next
15-minute interval using the adaptive clustering framework we propose. The actual and predicted
within-cluster median demand values are the medians taken from the clusters generated by actual
demand and predictions inputs respectively. The deviation between the actual and predicted
within-cluster medians serves as an indicator of predictive clustering performance. Again, RMSE
and MAE are applied as error measurements.

Results of Case Study

The deterministic prediction accuracy of different models are reported in Table 1, measured by the
averaged RMSE and MAE. The performance of the vanilla data-driven machine learning models
well as their lagged dependent versions are rather close to each other, although XGBoost con-
sistently predicts most accurately for the forecasting of day shift. And all data-driven models
outperform the benchmarks TBATS and LSTMs by some margin in terms of prediction errors.
To confirm the statistical significance of prediction errors between models, we perform Diebold-
Mariano tests for all pairs of models. Only the forecasting performance difference between RF and
XGBoost is tested to be insignificant.

4



Table 1: The one-week point forecast results of various models trained with 21 weeks’
data, measured by MAE and RMSE.

Period Model Whole Week Weekday Weekend

RMSE MAE RMSE MAE RMSE MAE
Whole Day TBATS 1.762 1.395 1.653 1.373 1.851 1.438

LSTM 1.975 1.330 1.506 0.961 2.190 1.515

RF 1.145 0.830 1.110 0.851 1.229 0.895
LD-RF 1.155 0.838 1.092 0.835 1.237 0.906
XGBoost 1.145 0.829 1.103 0.843 1.235 0.902
LD-
XGBoost

1.174 0.859 1.106 0.849 1.255 0.934

Day Shift TBATS 1.514 1.272 1.613 1.424 1.500 1.257
LSTM 1.029 0.698 0.551 0.370 1.169 0.815

RF 0.770 0.582 0.664 0.566 0.847 0.655
LD-RF 0.780 0.591 0.656 0.556 0.865 0.669
XGBoost 0.769 0.582 0.654 0.555 0.847 0.658
LD-
XGBoost

0.796 0.611 0.680 0.575 0.885 0.697

Evening Shift TBATS 2.040 1.572 1.675 1.336 2.205 1.700
LSTM 2.799 2.244 2.163 1.719 3.087 2.527

RF 1.514 1.185 1.489 1.238 1.607 1.242
LD-RF 1.523 1.197 1.466 1.218 1.604 1.249
XGBoost 1.515 1.185 1.484 1.234 1.619 1.256
LD-
XGBoost

1.549 1.216 1.478 1.220 1.627 1.275

Figure 3 shows the average RMSE and MAE per pickup zone obtained from different forecasting
methods. As we analyzed in Figure 2, the average number of orders received per day increase as
we move from pickup zone 1 to zone 20. The rise of demand level seems to be positively correlated
to the average forecasting errors. And the forecasting performance of benchmarks TBATS and
LSTMs are much poorer compared to that of the tree-based methods when applied to the high
demand pickup zones.

(a) RMSE (b) MAE

Figure 3: The RMSE and MAE of different models measured for each pickup zone at the
general (i.e. whole day and whole week) level.

From the deterministic forecasting experiment, RF, LD-RF, XGBoost and LD-XGBoost have
shown good performance. Therefore, we continue to apply these four predictors and utilize their de-
terministic predictions as part of the input for dynamic demand hotspots clustering. Additionally,
we include the quantile forecasting approaches QRF and LD-QRF. The vanilla data-driven models
are treated as the benchmarks here to evaluate the benefit of using lagged-dependent models as
well as applying probabilistic predictive information as input.
Figure 4 shows an example visualization of demand hotspots clustering, where the grids are colored
based on the within-cluster average actual/predicted demands. In this example, adaptive predictors
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LD-RF and LD-QRF manage to identify the central hotspot, although predicted within-cluster
demands are all less than actual.

(a) Actual (b) LD-RF (c) LD-QRF

Figure 4: Visualization of clustered hotspots for 19:00-19:15 on Monday, September
14th using (a) actual demands, (b) predicted deterministic demands by LD-RF, and (c)
predicted quantile demands by LD-QRF respectively.

The RMSE and MAE evaluations of the real and predicted within-cluster median difference are
presented in Table 2. On the whole day level, the best RMSE and MAE are obtained by the
adaptive predictors using lagged-dependent features, namely the LD-RF, LD-XGBoost and LD-
QRF. Also the accuracy measured by MAE suggests the probabilistic predictors to perform better.
It means using probabilistic predictive information generate less errors on average, although it is
punished by some occasional larger errors.

Table 2: The RMSE and MAE of one-week’s predicted within-cluster median demand by
dynamic clustering method using deterministic and probabilistic predictions from models
trained by 21-week data.

Period Model Whole Week Weekday Weekend

RMSE MAE RMSE MAE RMSE MAE
Whole Day RF 0.791 0.810 0.729 0.770 0.867 0.863

XGBoost 0.795 0.808 0.730 0.762 0.874 0.869

LD-RF 0.784 0.794 0.721 0.761 0.861 0.838
LD-
XGBoost

0.788 0.801 0.730 0.759 0.859 0.857

QRF 0.831 0.716 0.781 0.660 0.893 0.791
LD-QRF 0.820 0.699 0.767 0.648 0.886 0.766

Day Shift RF 0.657 0.601 0.647 0.551 0.671 0.668
XGBoost 0.660 0.599 0.648 0.543 0.677 0.673

LD-RF 0.660 0.601 0.652 0.552 0.670 0.667
LD-
XGBoost

0.666 0.614 0.659 0.554 0.675 0.694

QRF 0.718 0.483 0.729 0.412 0.713 0.577
LD-QRF 0.712 0.484 0.727 0.422 0.691 0.568

Evening Shift RF 0.952 1.112 0.834 1.086 1.090 1.145
XGBoost 0.956 1.109 0.834 1.078 1.099 1.151

LD-RF 0.935 1.072 0.811 1.063 1.080 1.084
LD-
XGBoost

0.936 1.071 0.822 1.055 1.070 1.092

QRF 0.971 1.054 0.851 1.020 1.112 1.099
LD-QRF 0.954 1.008 0.820 0.975 1.109 1.052

Again, we perform Diebold-Mariano tests on the within-cluster median predicting outcomes for
each pair of models covered in the second experiment. Results show that the forecasting perfor-
mance between RF and XGBoost, and between XGBoost and LD-XGBoost are not significantly
distinguishable from one another. The statistical test is significant for other pairs.
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4 Conclusions

This study proposes a dynamic demand hotspots forecasting framework that is able to assist
operational decision making for on-demand meal delivery platforms. Through a case study, we
show that the performance is improved by using the adaptive data-driven forecasting methods we
propose, and the probabilistic predictive feature we create from the quantile demand predictions as
input. A further study could focus on generating real-time resource-demand rebalancing decisions
by incorporating the predicted insight provided by our framework.
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