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ABSTRACT 

The main contribution of this study is to derive the crowding valuation of public transport 

passengers in a post-pandemic era entirely based on observed, actual passenger route choices. We 

derive passengers’ crowding valuation for the London metro network based on a revealed 

preference discrete choice model using maximum likelihood estimation. We find that after the 

passenger load on-board the metro reaches the seat capacity, the in-vehicle time valuation 

increases by 0.422 for each increase in the average number of standing passengers per square 

metre upon boarding. When comparing this result to a variety of crowding valuation studies 

conducted before the pandemic in London and elsewhere, we can conclude that public transport 

passengers value crowding more negatively since the pandemic. Our study results contribute to a 

better understanding on how on-board crowding in urban public transport is perceived in a 

European context since the outbreak of the COVID-19 pandemic. 
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1. INTRODUCTION 

In many urban public transport (PT) systems worldwide high passenger volumes result in high 

crowding levels on-board PT vehicles. Over the last two decades, many studies have been per-

formed to public transport crowding valuation, by inferring the PT in-vehicle time crowding mul-

tiplier as a function of the on-board load factor or standing density (average number of standing 

passengers per m2). Initially, most of these studies relied on stated preference (SP) approaches 

where respondents were asked in (online) surveys to indicate which route or mode choice alter-

native they would choose based on hypothetical crowding scenarios (e.g. Batarce et al. 2016, 

Tirachini et al. 2017, Wardman and Whelan 2011, Li and Hensher 2011). In more recent years 

there is an increasing number of studies using revealed preference (RP) for this purpose. With the 

availability of large-scale passenger data from Automated Fare Collection (AFC) systems and/or 

Automated Passenger Count (APC) systems such as load-weigh systems, passengers’ crowding 

valuation can be derived from empirically observed route and mode choice behaviour. RP based 

crowding studies have been applied to case studies in Singapore (Tirachini et al. 2016), Hong 

Kong (Hörcher et al. 2017), the Netherlands (Yap et al. 2020) and Washington, DC (Yap and Cats 

2021). 

 

All abovementioned studies estimate the perception of PT crowding based on data before the 

outbreak of the COVID-19 pandemic. One can expect that passengers are perceiving crowding 

more negatively since the start of the pandemic as crowded environments generally pose a higher 

risk of contracting COVID-19. It is thus of utmost importance to understand how PT passengers 

perceive on-board crowding in this post-pandemic era, as changes in crowding perception might 
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influence route and mode choice and might hamper a full demand recovery on PT routes being 

perceived as (over)crowded, imposing in effect new de-facto capacity limits. More recently, a few 

studies have been performed which assess passengers’ post-pandemic crowding perception based 

on stated preferences elicited from choice experiments (Bansal et al. 2022, Basnak et al. 2022, 

Flügel and Hulleberg 2022, Shelat et al. 2022). However, as of yet no studies have been performed 

which use observed passenger route choices from large-scale AFC and APC systems to re-estab-

lish public transport crowding perception in the aftermath of the pandemic based on actual pas-

senger behaviour rather than based on stated behaviour in surveys or choice experiments. 

 

The main contribution of our study is deriving the crowding valuation of public transport passen-

gers in a post-pandemic era entirely based on observed, actual passenger route choices. The results 

of our revealed preference approach thereby add to the emerging evidence from studies which 

derive post-pandemic crowding perceptions from SP surveys (see Table 1). By relying on large-

scale, empirical passenger demand data, we derive crowding valuations based on more than 

20,000 observed passenger journeys in the London PT network. 

 

Table 1. Study contribution 

 
PT crowding studies Stated Preference Revealed Preference 

 

 

Pre-pandemic 

 

Li and Hensher (2011) 

Wardman and Whelan (2011) 

Batarce et al. (2016) 

Tirachini et al. (2017) 

 

 

Tirachini et al. (2016) 

Hörcher et al. (2017) 

Yap and Cats (2021) 

 

 

Post-pandemic 

 

Bansal et al. (2022) 

Basnak et al. (2022) 

Flügel and Hulleberg (2022) 

Shelat et al. (2022) 

 

 

This study 

2. METHODOLOGY 

Data input 

As input for our study we use passenger demand and occupancy data derived from the urban PT 

network of the Greater London Area, which is under the authority of Transport for London (TfL). 

For metro journeys in London each row in the AFC data consists of the location and time of the 

first station entry and of the last station exit. For buses only the boarding stop, time and bus route 

are empirically available, whereas the alighting bus stop is inferred. The data format for metro 

and bus journeys is illustrated in Table 2. As metro crowding information is not directly available 

from AFC data, we rely on APC data obtained from load-weigh data for the lines where the rolling 

stock is equipped with load-weigh systems. This provides on-board passenger loads for each line 

segment by train and on average per 15-minute time interval. As London buses are not equipped 

with APC systems, bus crowding information can only be inferred. Therefore, we only focus on 

estimating the crowding valuation for metro journeys for which we can rely directly on APC data, 

while keeping the bus data in the passenger journey dataset. 
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Table 2. An illustration of the structure of the AFC dataset 

 
Mode Route Start Time Start Stopcode End Time End Stopcode 

Metro - 2022-06-15 08:01:12 778 2022-06-15 08:19:53 729 

Bus 43 2022-06-17 16:44:05 BP3065 2022-06-17 16:59:22* BP2336* 

* inferred, not empirically available 

 

In this study we estimate three different models: 

 A pre-pandemic off-peak model based on 3-7 February 2020. We use this as an un-

crowded pre-pandemic baseline model. 

 A post-pandemic off-peak model based on 13-17 June 2022, used to assess whether base 

level in-vehicle time and waiting/walking time valuations have changed since the 

COVID-19 pandemic.  

 A post-pandemic peak model based on the same period 13-17 June 2022. This model, 

focusing on AM and PM journeys, estimates the post-pandemic metro crowding valuation 

based on load-weigh data which is available for this period. 

During the selected post-pandemic period 13-17 June 2022 there were no COVID related re-

strictions in place anymore in London. Additionally, no capacity constraints, social distancing or 

mandatory face covering were in place when travelling by PT. This implies that June 2022 reflects 

a more steady-state situation in the post-pandemic era. 

Choice set generation 

To generate a choice set we apply the following criteria and filtering rules: 

 Exclude incomplete and unrealistic journeys. 

 Include metro journeys entirely made on lines for which load-weigh data is available 

(Central and Victoria Line).  

 Include metro journeys between station pairs with unambiguous routing, to reliably infer 

the in-vehicle time and waiting time corresponding to the route a passenger took. 

 Include journeys made in the off-peak for the two uncrowded models (10-14h or 20-23h), 

and journeys in the AM peak (6-10h) or PM peak (15-19h) for the crowding model. 

 Only include origin-destination pairs with a sufficient number of observations for at least 

two different observed paths, as we rely entirely on observed passenger route choices to 

derive crowding perceptions. 

 For the crowding model, only include OD pairs with sufficient crowding levels (at least 

a load factor of 50%) for at least one of the paths. 

 Exclude OD pairs where one route option is dominant over the other paths. 

 

The resulting choice set inputs for all three models are summarised in Table 3. 

 

Table 3. Choice set description 

 
 Model 1 

Pre-pandemic 

uncrowded model 

Model 2 

Post-pandemic 

uncrowded model 

Model 3 

Post-pandemic 

crowding model 

Observations 50,494 46,400 20,970 

Number of OD pairs 407 377 60 

Number of paths 820 764 126 

Average number of paths per OD pair 2.01 2.03 2.10 

Average number of observations per 

OD pair 

124 123 350 
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Model specification 

We adopt a standard utility maximisation framework. To prevent biased estimates due to possible 

correlations between unobserved components of the different path alternatives 𝑎𝑜𝑑 ∈ 𝐴𝑜𝑑, we 

explicitly account for overlap between paths using a path size correction factor as proposed by 

Ben-Akiva and Bierlaire (1999). Therefore, the total disutility of each path 𝑈(𝑉, 𝑟, 𝜀) is composed 

of the structural, deterministic utility component 𝑉, a path size factor 𝑟 and a random error term 

𝜀 (Eq.1). The probability 𝑃𝑎 for choosing each path 𝑎 can then be calculated using the closed-

form function shown in Eq.2.  

 

𝑈𝑎𝑜𝑑
= 𝑉𝑎𝑜𝑑

+ 𝛽𝑝𝑠𝑙 ∙ 𝑟𝑎𝑜𝑑
+ 𝜀𝑎𝑜𝑑

     (1) 

 

𝑃𝑎𝑜𝑑
=

exp (𝑉𝑎𝑜𝑑
+𝛽𝑝𝑠𝑙∙𝑟𝑎𝑜𝑑

)

∑ exp (𝑉𝑎𝑜𝑑
+𝛽𝑝𝑠𝑙∙𝑟𝑎𝑜𝑑

)𝑎𝑜𝑑∈𝐴𝑜𝑑

     (2) 

 

The structural part of the utility function 𝑉 is a vector of observable route attributes with their 

corresponding weights as defined for the uncrowded off-peak models 1 and 2 (Eq.3) and for the 

crowding model (Eq.4). We specify mode-specific in-vehicle time coefficients 𝛽𝑖𝑣𝑡
𝑏  for bus and 

𝛽𝑖𝑣𝑡
𝑚  for metro, so that potential mode-specific differences in in-vehicle time valuation can be 

captured. A generic waiting/walking out-of-vehicle time coefficient 𝛽𝑤𝑡𝑡 is specified in the utility 

function, in such a way that 𝛽𝑤𝑡𝑡 directly reflects the ratio between waiting/walking time and in-

vehicle time valuation. We use the standing density on-board the metro 𝑑𝑚 as a crowding metric, 

which reflects the average number of standing passengers per square metre as derived from load-

weigh data for each route segment per 15-minute time interval. The standing density equals zero 

if the passenger load 𝑞 is smaller than the seat capacity 𝜅 – implying that all passengers can have 

a seat – and increases up to 4 standing passengers per m2  when all surface available for standing 

𝜃 has been used. In this study we test three different metrics for capturing the crowding perception 

associated with the standing density: the average standing density across all links of a passenger 

journey (Eq.5), the standing density at the first link of a passenger journey upon boarding (Eq.6), 

and the maximum standing density (over all links 𝑒𝑖 ∈ 𝐸𝑖) at the busiest point of the passenger 

journey (Eq.7). This enables us to assess which formulation of standing density is most important 

for passenger’s crowding valuation. The coefficient 𝛽𝑑
𝑚 is specified such that it reflects the in-

vehicle time crowding multiplier as function of the standing density. 

 

𝑉 = 𝑎𝑠𝑐𝑏 ∙ 𝑏  + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝑡𝑖𝑣𝑡

𝑏 + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡

𝑏 + 

                𝑎𝑠𝑐𝑚 ∙ 𝑚 + 𝛽𝑖𝑣𝑡
𝑚 ∙ 𝑡𝑖𝑣𝑡

𝑚 + 𝛽𝑖𝑣𝑡
𝑚 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡

𝑚     (3) 

 

𝑉 = 𝑎𝑠𝑐𝑏 ∙ 𝑏  + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝑡𝑖𝑣𝑡

𝑏 + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡

𝑏 + 

                  𝑎𝑠𝑐𝑚 ∙ 𝑚 + 𝛽𝑖𝑣𝑡
𝑚 ∙ 𝑡𝑖𝑣𝑡

𝑚 ∙ (1 + (𝛽𝑑
𝑚 ∙ 𝑑𝑚)) + 𝛽𝑖𝑣𝑡

𝑚 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡
𝑚  (4) 

 

𝑑𝑖
𝑎𝑣𝑔

= max (
∑

𝑞𝑒−𝜅𝑒
𝜃𝑒

𝑒𝑖∈𝐸𝑖

|𝐸𝑖|
, 0)      (5) 

𝑑𝑖
𝑓𝑖𝑟𝑠𝑡

= max (
𝑞𝑒1−𝜅𝑒1

𝜃𝑒1

, 0)      (6) 

𝑑𝑖
𝑚𝑎𝑥 = max (𝑚𝑎𝑥 (

𝑞𝑒𝑖
−𝜅𝑒𝑖

𝜃𝑒𝑖

, 0))    ∀ 𝑒𝑖 ∈ 𝐸𝑖    (7) 
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3. RESULTS AND DISCUSSION 

Results 

Maximum likelihood estimation is performed to infer the coefficients which best explain the ob-

served passenger route choices for the three different models. The Newton algorithm is used as 

iterative method to solve this non-linear optimisation problem. From the model estimation sum-

mary shown in Table 4, it can be seen that the Rho-square-bar of crowding model 3 is 37% higher 

compared to the Rho-square-bar of uncrowded post-pandemic model 2. Model estimation results 

are presented in Table 5. The signs of all coefficients are plausible and in line with a-priori ex-

pectations and findings reported by previous studies. As we don’t have access to information on 

the panel structure of the data, we report the robust t-statistic and robust p-value as sandwich 

estimator with the aim of preventing an overestimation of the model coefficients. The absolute 

value of the robust t-value is larger than 1.96 for all estimated coefficients, which confirms that 

our results are statistically significant. 

 

Table 4. Model estimation summary 

 
 Model 1 

Pre-pandemic 

uncrowded model 

Model 2 

Post-pandemic 

uncrowded model 

Model 3 

Post-pandemic 

crowding model 

Observations 50,494 46,400 20,970 

Number of estimated parameters 6 6 6 

Initial log-likelihood -35,339 -33,177 -12,209 

Final log-likelihood -28,182 -25,936 -8,551 

Rho-square 0.203 0.218 0.300 

Rho-square-bar 0.202 0.218 0.299 

Akaike Information Criterion (AIC) 56,377 51,884 17,115 

Bayesian Information Criterion (BIC) 56,430 51,937 17,162 

 

Table 5. Model estimation results 

 
 Model 1 

Pre-pandemic  

uncrowded model 

Model 2 

Post-pandemic  

uncrowded model 

Model 3 

Post-pandemic 

crowding model 

Coefficients Value 

(robust t-value) 

Value 

(robust t-value) 

Value 

(robust t-value) 

𝑎𝑠𝑐𝑏 – alternative specific constant bus -0.677** (-21.0) -0.792** (-21.2) -0.635** (-16.1) 

𝑎𝑠𝑐𝑚 – alternative specific constant metro +0.677** (+21.0) +0.792** (+21.2) +0.635** (+16.1) 

𝛽𝑖𝑣𝑡
𝑏  – in-vehicle time bus -0.0653** (-23.0) -0.0458** (-17.2) -0.0399** (-14.9) 

𝛽𝑖𝑣𝑡
𝑚  – in-vehicle time metro -0.0520** (-13.9) -0.0388** (-9.07) -0.0220** ( -12.5) 

𝛽𝑤𝑡𝑡 – ratio wait/walk time : in-vehicle time +1.94** (+17.6) +1.93** (+11.5) +1.93 (fixed)1 

𝛽𝑝𝑠𝑙  – path-sized logit factor -0.438** (-3.54) -0.757** (-9.18) -0.573** (-5.95) 

𝛽𝑑
𝑚 – standing density metro   +0.422* (+2.21) 

robust t-values in parentheses. * robust p < 0.05; ** robust p < 0.01 
1 Fixed for the ratio wait/walk time : in-vehicle time as found in uncrowded post-pandemic model 2 estimated for the 

same time period 

Discussion on uncrowded models 

Based on the ratio between the metro and bus in-vehicle time coefficients 𝛽𝑖𝑣𝑡
𝑚 :𝛽𝑖𝑣𝑡

𝑏  of the un-

crowded pre-pandemic model 1, we find that on average uncrowded in-vehicle time on-board a 

metro is perceived 20% less negatively than uncrowded bus in-vehicle time. The same ratio for 
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post-pandemic uncrowded model 2 shows that metro in-vehicle time is now on average valued 

15% less negatively compared to bus in-vehicle time. Whilst this still confirms a generic passen-

ger preference for metro over bus regarding in-vehicle time, this result suggests that the relative 

attractiveness of the metro compared to bus has decreased somewhat in terms of in-vehicle time. 

A possible explanation is that since the COVID-19 outbreak passengers value travelling in en-

closed, underground environments such as a metro system more negatively than pre-pandemic, 

as these might be perceived as areas with higher infection risks. In contrast, bus travel on the 

surface with frequent door openings at stops and the possibility for passengers to open windows 

can be perceived as a travel mode providing better ventilation and thus reducing COVID-19 in-

fection risks. 

 

𝛽𝑤𝑡𝑡, the coefficient which reflects the ratio between waiting/walking time and uncrowded in-

vehicle time, equals 1.94 for the pre-pandemic model. This implies that on average passengers 

value one minute of out-of-vehicle (walking or waiting) time as almost two minutes of in-vehicle 

time. In the post-pandemic model we see that on average out-of-vehicle time is perceived 1.93 

times more negatively compared to uncrowded in-vehicle time. As 𝛽𝑤𝑡𝑡 remains almost un-

changed between the pre-pandemic and post-pandemic off-peak models, we can conclude that PT 

waiting/walking time valuation relative to in-vehicle time did not change since the COVID-19 

pandemic. 

Discussion on crowding model 

For the post-pandemic crowding model the estimated metro crowding coefficient 𝛽𝑑
𝑚 is signifi-

cant at a 95% significance level, with the robust t-statistic of 2.21 being larger than 1.96. The 

value of this coefficient implies that after the passenger load on-board the metro reaches the seat 

capacity, the in-vehicle time valuation increases by 0.422 for each increase in the average number 

of standing passengers per square metre. When we linearly extrapolate the estimated crowding 

coefficient – as observed crowding levels averaged per 15-minute interval in our choice set did 

not exceed 3 standing passengers per m2 – we can estimate that the in-vehicle time multiplier 

would be equal to 2.69 when a train operates at full capacity (assumed at 4 standing passengers 

per m2). The model using the crowding level upon boarding (𝑑𝑓𝑖𝑟𝑠𝑡) was the only model resulting 

in a statistically significant standing density crowding coefficient. This suggests that the PT 

crowding level upon boarding best captures passengers’ crowding valuation. An explanation for 

this is that the crowding level upon boarding is related to the passenger’s seat probability, as this 

is an important determinant of whether a passenger will be able to have a seat during the entire 

journey.  

 

In Figure 1 we compare the in-vehicle time crowding curve as derived from our model to previous 

studies. Compared to the three pre-pandemic RP studies performed based on large-scale AFC data 

(Singapore, Hong Kong,Washington DC) we can conclude that our post-pandemic crowding mul-

tiplier found for London is substantially higher. The same conclusion is reached when comparing 

the SP results between a pre-pandemic and post-pandemic study conducted in Santiago de Chile. 

Specifically for London we refer to two pre-pandemic studies on crowding valuation. The first 

one is a RP study performed in the 1990s by Transport for London. The resulting crowding mul-

tiplier of 2.32 at 4 standing passengers per m2  is notably higher than other pre-pandemic studies, 

although this study has been performed several years ago using a different methodology than 

more recent RP studies. We can derive a more recent average pre-pandemic crowding multiplier 

for London using the SP based coefficients estimated for seated and standing passengers by 

Whelan (2009), which results in an average pre-pandemic in-vehicle time multiplier of 1.77. Our 

equivalent RP based estimated crowding multiplier for London in the post-pandemic era of 2.69 

provides strong evidence that PT passengers value metro crowding substantially more negatively 
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in London since the COVID-19 outbreak compared to both pre-pandemic studies in London, de-

spite their differences in methodology. The crowding valuation found in our study is comparable 

to the post-pandemic crowding valuation derived from SP research for Santiago de Chile by 

Basnak (2022), which gives confidence in the magnitude of our estimated crowding coefficient. 

 

 
 

Figure 1. In-vehicle time crowding multiplier as function of standing density 

4. CONCLUSIONS 

Based on the three estimated discrete choice models we can formulate three main conclusions. 

First, the average post-pandemic out-of-vehicle time valuation remains unchanged at almost twice 

the uncrowded in-vehicle time valuation. Second, whilst our study results confirm that there is a 

generic passenger preference for metro over bus regarding in-vehicle time, we find that the rela-

tive attractiveness of metro compared to bus has decreased somewhat post-pandemic in terms of 

in-vehicle time. This possibly echoes a more negative perception of metro travelling in a more 

enclosed, underground environment compared to bus travel. Third, our crowding model estima-

tion results show that passengers’ average in-vehicle time valuation increases by 0.422 for each 

increase in the average number of standing passengers per square metre. In contrast, this same 

value equals 0.22 as average across the six studies to pre-pandemic crowding valuation as reported 

in Figure 1. Compared to the results of these SP and RP studies conducted before the pandemic 

in London and elsewhere we thus clearly see a steeper slope of the post-pandemic crowding curve 

as found in our study, based on which we can conclude that PT passengers value crowding more 

negatively since the COVID-19 pandemic. 
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