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SHORT SUMMARY 

On-demand mobility services are transforming urban mobility. They can provide 
individual and collective benefits when managed optimally, and their successful 
integration within the existing urban transport system can enhance its performance. In 
contrast, inadequate fleet management can inflict high pick-up waiting times and 
passenger drop-out rates. One of the main challenges for on-demand mobility service 
operators is to proactively rebalance their fleets to ensure that the spatial distribution of 
supply matches the demand. This paper proposes to address this problem with a 
distributed auctioning approach. We design an architecture that relies on local controllers 
interacting with idle vehicles, encouraging them to relocate to their service area. We 
conduct simulations on the city of Lyon in France, which reveal a substantial increase in 
the number of passengers served compared to a scenario without rebalancing. 
 
Keywords: auctioning, fleet management, multi-agent modeling, on-demand services, ride-
hailing, simulation. 

1. INTRODUCTION 

Over the last decades, novel mobility services have appeared in cities, such as ride-sourcing (in-
cluding e-hailing and ride-splitting) and vehicle sharing. In particular, ride-sourcing companies 
have multiplied, competing with traditional taxi companies and providing travelers with a vast 
range of services. This new offer can meet an increasingly dynamic and non-regular mobility 
demand, unsatisfied by public transportation or personal car constraints. On one side, ride-sourc-
ing services offer more flexible services than public transit, on-spot and on-demand pick-up, and 
no connections. On the other side, they can be less costly than private car ownership and provide 
satisfying solutions to parking issues. At a collective scale, the services can contribute to limiting 
car ownership and its externalities, such as land occupancy, soil sealing, or congestion.  
 
However, efficiently managing this type of service requires handling several operational issues. 
Fleet rebalancing is one of them. It consists of reorganizing a vehicle fleet in space and time by 
dispatching idle vehicles towards high-demand areas to limit vehicle accumulation in attractive 
zones and ensure continuous and prompt service to passengers.  
 
Rebalancing must preferably be proactive, i.e., anticipate the future demand and reorganize the 
fleet accordingly. Numerous literature studies have looked at this management issue. Yet, most 
offer centralized management methods, raising questions regarding their robustness to scaling or 
communication failures (Alonso-Mora et al., 2017; Miao et al., 2017, 2015; Ramezani and Nou-
rinejad, 2018). In this respect, distributed approaches are interesting alternatives. Recent works 
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have looked into fleet rebalancing through the lens of passengers and drivers-intended incentives, 
with pricing and information-sharing strategies or coverage control (Zhu et al., 2022). In this 
work, we explore this subject through the angle of auctioning. While auctioning approaches have 
been applied for developing (reactive) matching strategies (Manjunath et al., 2021; Nourinejad 
and Roorda, 2016; Wu et al., 2008), this is, to our knowledge the first attempt to extend its appli-
cation to fleet large scale repositioning.  

2. METHODOLOGY 

The method we develop relies on a mesh of controllers that divide the urban network into an equal 
number of service areas. These controllers, which can be associated with physical infrastructures 
such as taxi stations and deposits, are considered at the service of a public authority (e.g., local 
authority or transport agency). Their goal is to ensure that ride requests occurring within the 
boundaries of their service area are served with the minimum waiting time. For this purpose, they 
aim to attract idle vehicles within their perimeter by negotiating with them at regular intervals 
(e.g., every 10 minutes) within a two-sided matching market. 
 
With this frequency, the controllers are first in charge of forecasting the future demand (i.e., the 
number of requests). The specific topic of demand forecasting is out of the scope of this paper, 
and we will assume that historical data allow modeling the future number of requests as a random 
variable 𝑋	 = 	𝑁(𝜇!" , (𝜎!")#). This assumption is supported by recent research in demand predic-
tion (Khalesian et al., 2022). To attract the required number of vehicles, local controllers publish 
within the matching market as many relocating offers as expected ride requests. These offers will 
allow vehicles to which they are assigned to relocate within the corresponding service area. Each 
relocation offer is characterized by: 

1. The likelihood of the expected ride request. We define the likelihood 𝑝$ of the kth ex-
pected ride request as the probability that at least k ride request occur during t. Therefore, 
we have: 

 ∀𝑘 ∈ ℕ, 𝑝$ =	𝑆%(𝑘) = 	𝑃(𝑋 ≥ 𝑘)	 (1) 
 

with 𝑆% the survival function of X. 
2. The expected revenue 𝑔3! for picking up a passenger in service area i, which can be esti-

mated based on historical data.  
 
Then, the matching of vehicles with a relocation offer follows a distributed Gale-Shapley algo-
rithm (Brito and Meseguer, 2006, 2005), often used to solve matching problems (marriage, stu-
dent-college or resident-hospital matching). First, the features of relocating offers allow drivers 
to estimate their utility in applying to one or another relocation option. This utility is estimated as 
the expected net revenue, computed as the difference between expected incomes (expected reve-
nue weighted by request likelihood) and rebalancing costs:  

	
𝑈&(𝑖, 𝑘) 	= 	𝑝$ 	𝑔3! 	− 	𝑐&(𝑖) (2) 

 
Drivers bid on the most useful relocating option and share their expected arrival time within the 
region with the local controller. Then, local controllers rank the received offer according to their 
utility. For each relocation offer, the controller accepts its preferred application and rejects the 
others. Rejected vehicles update their preference list and apply to their second most-preferred 
option. If a controller previously now receives a better application, it can reject the previously-
matched vehicle and accept the new one. The rejected vehicle updates its preference list and ap-
plies to another relocation offer. This process goes on until all cars run out of interesting relocation 
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offers. In the end, vehicles matched relocate to their destination region, and unassigned vehicles 
remain idle at their current position. Although iterative, this process can be close to instantaneous, 
as drivers actually do not interfere in the process. We illustrate this communication protocol in 
Figure 1. 
 

 
Figure 1: Communication protocol supporting the fleet rebalancing 

 
Note that controllers can use several methods to evaluate the utility of the application of a vehicle. 
In the present paper, we use the following approach. A fictive occurrence time within the re-
balancing period is assigned to each expected ride request. Then, the utility of a vehicle applica-
tion is determined according to the delay the travel time the vehicle needs to join the service area 
would inflict on this expected passenger, given this fictive occurrence time. The utility function 
is triangular, maximal when the car arrives right on time, and decreases faster when the vehicle 
comes later than when it arrives in advance, as illustrated in Figure 2. 
 

 
Figure 2: Controllers’ utility 

 

3. RESULTS AND DISCUSSION 

Case study 

We choose the city of Lyon, France, as a case study. The network we model covers 121 km2 and 
includes both the city of Lyon and the city of Villeurbanne, located within a circular ring road. 
To conduct rapid simulations, we model the traffic on a simplified network of the city. The net-
work only includes the primary and secondary urban roads and highways, as illustrated by Figure 
2.a). The supply calibration and the demand scenarios used here have been calculated within the 
ERC Magnum Project (Mariotte et al., 2020). 15% of the inner flows are assigned to ride-hailing, 
while the remaining users are assumed to take their personal cars. The city is partitioned into 50 
service areas, as illustrated in Figure 2.b). The simulations are conducted on the MnMS multi-
agent simulation platform developed at Univ. Gustave Eiffel. This paper presents the results of 
simulations performed with a 4000-vehicle-large vehicle fleet and 10-minute-long passenger 
waiting time tolerance. 
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a) b)  

Figure 2. Simulation network. a) Road network. b) Service areas. 

 

Results 

We compare our strategy to a no-rebalancing scenario and evaluate performance based on several 
KPIs regarding service, users, drivers, and traffic. First, our analyses show that implementing our 
strategy over the city of Lyon allows increasing the number of passengers served by 9.88% 
(+1975 passengers) compared to the base scenario. This service increase is especially significant 
between 8:00 a.m. and 9:00 a.m., during the peak demand hour, as illustrated in Figure 3. Figure 
4 shows the level of service improvement in space. Applying our rebalancing strategy especially 
allows for increasing the service in the western suburban and less connected areas of the city 
(+32% of demand served in some areas) while being slightly detrimental to the service in the city 
center and eastern neighborhoods. We observed that this overall service improvement comes with 
an increase in waiting time before pick-up of 1.39 minutes on average. This increase is explained 
by the decrease in the number of available vehicles, due, on the one hand, to the rise in the number 
of passengers served, on the other hand, to rebalancing vehicles being considered unavailable for 
matching. Exploring variants of this rebalancing strategy that allow rebalancing vehicles to pick 
up passengers should allow limiting this waiting time increase. 
 

 
Figure 3: Number of users being served throughout simulation time. 
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Figure 4: Spatial visualisation of the service improvement thanks to rebalancing. 

 

4. CONCLUSIONS 

In this paper, we propose an original fleet rebalancing strategy based on outsourcing rebalancing 
management to local controllers and implementing a negotiation process between them and the 
vehicles. Our method significantly impacts the number of passengers served, especially in subur-
ban areas less connected to the city center. Although it also seems to increase the average waiting 
time of passengers, this increase is limited compared to the increase in the number of passengers 
served, and more flexible matching strategies will help to mitigate this effect. 
 
As a continuation of this work, future works will focus on conducting advanced sensitivity anal-
yses to fleet size, uncertainty levels, or riding fares. We will also explore different utility functions 
for local controllers and assess their impact on waiting time, amount of passengers served, or 
empty mileage.  
 
In the mid-term, we will use this approach to develop local incentive strategies to encourage ve-
hicles to relocate to service areas with lower accessibility or uncertain demand. We will also look 
at enriching the method to foster cooperation between local controllers rather than competition. 
Finally, this approach based on controllers external to the service could be relevant in managing 
the competition between different mobility services. 
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