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SHORT SUMMARY 

There is a fierce competition between two-sided mobility platforms (e.g., Uber and Lyft) fueled 

by massive subsidies, yet the underlying dynamics and interactions between the competing plat-

forms are largely unknown. These platforms rely on the cross-side network effects to grow, they 

need to attract agents from both sides to kick-off: travellers are needed for drivers and drivers are 

needed for travellers. We use our coevolutionary model featured by the S-shaped learning curves 

to simulate the day-to-day dynamics of the ride-sourcing market at the microscopic level. We run 

three scenarios to illustrate the possible equilibria in the market. Our results underline how the 

correlation inside the ride-sourcing nest of the agents choice set significantly affects the plat-

forms’ market shares. While late entry to the market decreases the chance of platform success and 

possibly results in “winner-takes-all”, heavy subsidies can keep the new platform in competition 

giving rise to “market sharing” regime. 

 

Keywords: Two-sided mobility, Ride-sourcing, S-shaped learning, Platform competition, 

Agent-based simulation  

1. INTRODUCTION 

Ride-sourcing companies such as Uber and Lyft have achieved significant market share in a short 

time through the two-sided platform business model. The reason underlying such a tremendous 

potential to grow in two-sided markets is the power of network. The classic definition by Rochet 

and Tirole (2006), characterizes them as the markets in which one or several platforms enable 

interactions between end-users and try to get both sides on board by appropriately charging each 

side. The platforms associated with these markets rely on the critical mass required for their self-

sustainable operations and the network effects to induce growth (Belleflamme & Peitz, 2016). 

Platforms apply various market entry strategies in the early adaptation phase to follow a desired 

growth pattern that includes different stages from their launch up to maturity.  

 

Even though ride-sourcing platforms have the potential to grow rapidly, they fiercely compete 

over the common pool of travelers and drivers. Considering the so-called multi-homing charac-

teristics of the market, in which users can move from one platform to another with ease, it be-

comes extremely challenging for the platform to gain and hold the market share. As for the plat-

forms new to the market, they need to first induce the interactions between the decentralized 

supply and demand to reach market shares sufficient to trigger the cross-side network effects. On 

the other side, existing platforms with stable market share adjust their strategies in accordance 

with other platforms to avoid losing market share. These platform strategies are mostly controlled 

by subsidies and implemented through e.g., discounts, and incentives.  
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There is a wide body of research on the competition between the platforms. Relying on the game 

theory, Zhang and Nie (2021) study ride-sourcing market in which two platforms compete with 

each other, as well as with transit, and Ahmadinejad et all., (2019) examine the competition im-

pact on ride-sourcing parties by adjusting the trip fare. Using analogous methodology, Siddiq and 

Taylor (2022) throw light on the importance of autonomous vehicles for platforms’ profitability. 

In different approaches, Shoman and Moreno (2021), conduct a stated preference analysis to find 

the ride-sourcing impact on the modal split in city of Munich. 

Study approach and contribution 

Previous studies are either equilibrium-based or assume fixed demand and/or supply and they 

neglect the interactions between the parties driving the complex system evolution. Here, we illus-

trate with our experiments, an adequate framework to realistically model the platform competition 

in two-sided model with subsidizing strategies is missing. 

 

Previously, we proposed a novel, microscopic co-evolutionary model which is capable of repro-

ducing platform’s growth mechanism day-to-day. The key element of the model is the S-shaped 

learning curves which enable the agents to adapt and stabilize their behavior and yet to remain 

sensitive to the changes in their environment (Ghasemi and Kucharski, 2022). In this study, we 

extend the previous model with platform competition considering the multi-homing characteris-

tics of the system. We incorporate nested choice modelling to examine the correlation between 

platforms and the possible equilibria in the ride-sourcing market. 

2. METHODOLOGY 

We model two-sided mobility market with MaaSSim1 agent-based simulator (Kucharski and Cats, 

2022), extended here with a coevolutionary model to represent the day-to-day dynamics of two-

sided mobility market. We simulate two classes of agents representing two sides of the system 

and a platform as an intermediate agent matching the demand to the supply. A pool of travelers 

and drivers, who are not formerly notified about our ride-sourcing platform, gradually become 

aware of the ride-sourcing. When an agent gets notified, he/she may decide to participate in the 

market – i.e., supply the demand as a driver or travel to his/her destination as the platform client. 

With the participation, agents start to learn and adapt their behavior through endogenous and 

exogenous factors. 

Platform 

Platform executes the strategy 𝑆𝑡 with the control levers, namely: trip fare 𝑓𝑡 , commission rate 𝑐𝑡 

, discount 𝑑𝑡 and marketing 𝑚𝑡 for each day 𝑡 of the simulation. 

 

𝑆𝑡 = {𝑓𝑡, 𝑐𝑡 , 𝑑𝑡 , 𝑚𝑡}                                                                                                                       (1) 

Traveller 

Each notified traveler 𝑟 on day 𝑡 selects between alternatives from the choice set 𝐶𝑟 = {𝑟𝑠, 𝑝𝑡} =
{{𝑝1, 𝑝2}, 𝑝𝑡} including public transport (𝑝𝑡) and two ride-sourcing (𝑟𝑠) platforms (𝑝1, 𝑝2). While 

the utility of public transport is fixed (formulated with a typical access/egress, waiting times, 

 
1 https://github.com/RafalKucharskiPK/MaaSSim 
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transfers, etc.), the platforms’ utility is composed of multiple components, each adjusted day-to-

day (as detailed in the upcoming sections). 

Driver 

Analogous to travellers, each notified driver 𝑑 makes a choice from the choice set 𝐶𝑑 = {𝑟𝑠, 𝑝𝑡} =
{{𝑝1, 𝑝2}, 𝑟𝑤} which includes: working for ride-sourcing (𝑟𝑠) platform one (𝑝1) and platform two 

(𝑝2), and working elsewhere, for a fixed reservation wage (𝑟𝑤). The utility of working for plat-

form as a driver is composed of same components of travellers and adjusted day-to-day as detailed 

below. 

Choice Utility 

For any notified agent 𝑖, we propose the generic perceived utility (𝑈) formulation composed of 

three components: experience (𝑈𝐸), marketing (𝑈𝑀) and word of mouth (𝑈𝑊𝑂𝑀): 

 

 𝑈𝑖,𝑡 = 𝛽𝑖
𝐸 . 𝑈𝑖,𝑡−1

𝐸 + 𝛽𝑖
𝑀. 𝑈𝑖,𝑡−1

𝑀 + 𝛽𝑖
𝑊𝑂𝑀. 𝑈𝑖,𝑡−1

𝑊𝑂𝑀 + 𝐴𝑆𝐶 + 𝜀𝑖                                           (2) 

 
Agents every day (t) choose based on experiences collected until the previous day (t-1). Experi-

enced utility is endogenous and comes directly from the simulation: drivers experience the actual 

incomes and operating cost, travelers experience travel time, waiting time and trip fare. Marketing 

is an exogenous factor being positive or negative (e.g., recent Uber scandal). Word-of-mouth is 

shared among agents over the social network. The 𝛽’s in the formula reflect the relative weights 

of respective utility components (ensuring that 𝛽𝑖
𝐸 , 𝛽𝑖

𝑀, 𝛽𝑖
𝑊𝑂𝑀 > 0 and 𝛽𝑖

𝐸 + 𝛽𝑖
𝑀 + 𝛽𝑖

𝑊𝑂𝑀 = 1). 

The 𝐴𝑆𝐶 captures the effect of unobserved factors on the perceived utility of alternatives and 𝜀𝑖 

is the random utility error term. In such form, the utility is consistent with the discrete choice 

theory and can be applied e.g., in the logit model. 

S-shaped learning and adaptation 

The key element of the proposed model is the following adjustment mechanism which allows us 

to realistically represent the agents’ dynamics specific to the platform growth. Agents learn and 

adapt their choice day-to-day based on the perceived utility components. Here, instead of expo-

nential memory curve (used e.g., in de Ruijter et al., 2021), we follow Murre (2014) and propose 

a more adequate formulation of the so-called S-shaped learning curve in the context of urban 

mobility (Ghasemi and Kucharski, 2022).  Fig. 1 provides a basic idea of our model. 

 

The adjustment process can be seen as moving each of the utility components along the S-shaped 

curve with each of the utility components. Positive experience increases the experienced utility 

pushing the perception towards upper tail, and negative experience decreases it pushing the per-

ception towards lower tail. The two extreme points (lower and upper endings) of curve represent 

absolutely negative and positive attitudes and learning can go both directions on any day. Trig-

gered by the consecutive positive/negative experiences, learning proceeds slowly for the agents 

who already have sharp, extreme opinions, and is fast for the neutral agents. To this end, on the 

contrary to state-of-the-art models, we can stabilize the agents’ behavior and, at the same time, 

remain sensitive to the system changes. 
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Figure 1: S-shaped curves used for the day-to-day learning process. The adjustment vol-

ume not only depends on sensitivity 𝛼 but also the signal strength (∆𝑢) and the position 

on the S-shaped curve. 
 

Technically, we obtain the utility of respective components 𝑐 ∈ {𝐸, 𝑊𝑂𝑀, 𝑀} after day 𝑡 (𝑈𝑖,𝑡
𝑐 ) 

as follows. First, we retrieve the cumulative utility on the previous day 𝑡 − 1 by applying the 

inverse sigmoid function (eq. 3).  Then, we update it with the difference coming from today 𝑡 (eq. 

4), i.e. the signal strength. We weight it with the learning speed parameter 𝛼 (determining step 

size on the S-shaped curve). Eventually, to obtain the updated utility at the end of day 𝑡 we use 

sigmoid (logistic) function with shape parameter 𝛽 (5): 

 

𝐶𝑈𝑖,𝑡−1
𝑐 = 𝑙𝑛(

1

𝑈𝑖,𝑡−1
𝑐 − 1)                                                                                                              (3)  

 

𝐶𝑈𝑖,𝑡
𝑐 = 𝐶𝑈𝑖,𝑡−1

𝑐 + 𝛼. ∆𝑢𝑖,𝑡
𝑐                                                                                                            (4) 

 

𝑈𝑖,𝑡
𝑐 =

1

1+ 𝑒𝑥𝑝(𝛽.𝐶𝑈𝑖,𝑡
𝑐 )

                                                                                                                     (5)  

           

The above formulation is generic to represent various kinds of learning new experiences and ex-

posure to effects. For the purpose of this study, we introduce specific formulas for three compo-

nents of utility. 

 

For the experience we adjust the utility as follows. Experienced cumulative utility of drivers 𝑑 on 

day 𝑡 for platform 𝑝 is updated with the relative difference between the reservation wage (𝑅𝑊𝑑 ) 

and the income experienced on that day (eq. 6). Similarly, traveler 𝑟 adjusts his/her experienced 

cumulative utility on day 𝑡 (eq. 7) according to relative difference between the experienced utility 

of the platform 𝑝 (as a function of waiting time, travel time, and trip fare) and the public transport 

(𝑝𝑡). 

 

 ∆𝑢𝑑,𝑡
𝐸,𝑝

=
𝑅𝑊𝑑 −𝐸𝑑,𝑡

𝑅𝑊𝑑

                                                                                                                          (6) 

 

∆𝑢𝑟,𝑡
𝐸,𝑝

=
𝑈𝑟

𝑝𝑡
−𝐸𝑟,𝑡

𝑈𝑟
𝑝𝑡                                                                                                                             (7) 

 

The marketing spreads uniformly among all the agents (target clients) and accumulates in time 

over the period of the marketing campaign. While marketing is constant before and after the cam-

paign, it produces a positive effect on each exposure.  The chance of agent 𝑖 to be exposed to the 
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marketing on day t depends on the campaign intensity (𝑝𝑖
𝑀, from [0,1] range). We update the 

cumulative utility for marketing as follows: 

 

∆𝑢𝑖,𝑡
𝑀,𝑟𝑠 = 𝑝𝑖

𝑀(𝑈𝑖,𝑡
𝑀 − 1)                                                                                                                    (8) 

 

For the word-of-mouth, we assume pairwise interactions through the social network with agents, 

who share their perceived utility with each other. Analogically to the marketing, the WOM inten-

sity (𝑝𝑖,𝑗
𝑊𝑂𝑀) determines the likelihood of agent 𝑖  to share his/her opinion with agent 𝑗 on day 𝑡. 

Influenced by the exchange of views with their peers, agents adjust their cumulative utility of 

word-of-mouth as follows: 

 

∆𝑢𝑖,𝑡
𝑊𝑂𝑀,𝑟𝑠 = 𝑝𝑖,𝑗

𝑊𝑂𝑀(𝑈𝑖,𝑡
𝑊𝑂𝑀 − 𝑈𝑗,𝑡)                                                                                                (9) 

Participation probability 

An agent starts considering a ride-sourcing platform in her mode choice set (𝐶𝑖) only after being 

notified about it. Due to correlation between the ride-sourcing platforms, we apply the nested logit 

model. We assume the agent first selects between the alternative (𝑝𝑡/𝑟𝑤) and ride-sourcing, and 

when she selected ride-sourcing she choose among the competing platforms that she is notified 

about. The participation probability of notified agents is updated every day and depends on the 

perceived utility of alternatives as follows. The probability of choosing alternative 𝑘 (eq. 13) is 

the product of probability of 𝑘 inside the nest (eq. 10) and the probability of nest 𝑛 (eq. 12) based 

on the expected maximum utility of nest (𝑊𝑛).  𝐼𝑖,𝑡
𝑘  is a binary variable switching from zero to 

one when agent gets notified about alternative k. The scale parameters are 𝜃 (at the upper choice 

level) and 𝜃𝑛 (within the ride-sourcing nest) which allows us to calculate the correlation inside 

the nest (𝜌 ∈ [0,1] ) as: 𝜌 = 1 −
𝜃𝑛

𝜃
. 

 

𝑃𝑖,𝑡
𝑘/𝑛

= 𝐼𝑖,𝑡
𝑘

𝑒𝑥𝑝(
𝑈𝑖,𝑡

𝑘

𝜃𝑛
)

∑ 𝑒𝑥𝑝(
𝑈𝑖,𝑡

𝑘′

𝜃𝑛
)𝑘′∈𝐾

                                                                                                       (10) 

 𝑊𝑖,𝑡
𝑛 = 𝜃𝑛. 𝑙𝑜𝑔(∑ 𝑒𝑥𝑝(

𝑈𝑖,𝑡
𝑘′

𝜃𝑛
)𝑘′∈𝑛 )                                                                                   (11) 

𝑃𝑖,𝑡
𝑛 =

𝑒𝑥𝑝(
𝑊𝑖,𝑡

𝑛

𝜃
)

∑ 𝑒𝑥𝑝(
𝑊𝑖,𝑡

𝑛

𝜃
)𝑛′∈𝑁

                                                                                           (12) 

 𝑃𝑖,𝑡
𝑘 = 𝑃𝑖,𝑡

𝑘/𝑛
 .  𝑃𝑖,𝑡

𝑛                                                                                                      (13) 

Experimental design  

We experiment on Amsterdam, with 2000 travelers and 200 drivers. The reservation wage of 

drivers is assumed 10.63[€/hour]. The operational costs (fuel, depreciation costs, etc.) of the driv-

ers amount to 0.25 [€/km]. Each run simulates  4 hours of interactions between the parties. Vehicle 

speed is set to the flat 36 [km/h]. We consider the ride-sourcing fare of 1.2 [€/km] with a minimum 

of 2 [€] (based on the Uber price estimator). The utility weights of three main component are 

fixed as: 𝛽𝐸 = 0.7, 𝛽𝑊𝑂𝑀 = 0.2 , and 𝛽𝑀 = 0.1, while Marketing and WOM intensity are set to 

𝑝𝑖
𝑀 =  𝑝𝑖,𝑗

𝑊𝑂𝑀 = 10%. We assumed the value of time 10.63 [€/hour] to compute the experienced 

utility of travellers. 
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3. RESULTS AND DISCUSSION 

We first illustrate how the single platform competes against public transport in the period of one 

year (Figure 1). As agents get notified, they are initially reluctant to select the new travel mode. 

Yet, once travellers try out the platform and experience its benefits (40% discounts), they start to 

adapt and use ride-sourcing more frequently. This provides adequate income for the drivers. As 

the network gets denser on both demand and supply sides, it generates greater cross-side network 

effects. These effects provide both travellers and drivers with extra utilities in terms of lower 

waiting times and higher incomes, respectively. Thanks to this, the system grows and stabilizes 

around day 200.  

 

 
Figure 2: Single platform evolution with the baseline strategy. Platform applies market-

ing campaign and 40% discount on trip fares only in the initial 100 days (vertical dashed 

line), while commission rate is fixed to 10%.  

Correlation between platform alternative and the market shares 

Next, we introduce a second platform to the system and apply nested logit for the agents’ mode 

choice. We investigate how the assumption of correlations in the nested choice model affects the 

equilibrium market shares. (fig. 3).  

 

 
Figure 3: Ride-sourcing and PT market shares with different correlations between ride-

sourcing alternatives. As correlation increases, total market share of ride-sourcing (both 

platforms) decreases. The dashed lines represent the ride-sourcing market share in the 

monopoly market with single platform. 
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Three scenarios and relevant equilibria 

We fix the correlation rate inside the ride-sourcing choice nest at a moderate value of 0.4, and 

demonstrate the three scenarios with predetermined strategies as illustrated in fig. 3 to examine 

the emerging equilibria. In the first scenario, both platforms (P1, P2) apply baseline strategy, P2 

launches 25 days later in the second scenario without any strategy change. In the third scenario, 

the P2 enter laters, but aggressively, with the 80% discount starting form day 25. 

 

 
Figure 3: Three competition scenarios and resulting market shares.  

 
Two platforms applying the same strategy, at the same time, end up with the same market shares 

(Scenario 1). However, late market entry with the same strategy results in failure (Scenario 2). 

This happens because agents have already started to use the early platform once P2 enters the 

market. Thus, P1 starts the cross-side network effects earlier, and as the utility and market share 

differences increase between two platforms, it becomes impossible for late platform to succeed. 

P2 requires an alternative strategy to compensate the late market penetration which means more 

subsidies on demand or/and supply side. In the Scenario 3, the late platform enters at the day 25 

offering 80% discount for the next 200 days (instead of 100 days of 40% discount) on the demand 

side to overtake the early platform. In contrast to the second scenario, P2 reaches higher market 

share than P1 in the last scenario, at first (until day 225). Yet, as P2 terminates the discount its 

market share decreases and stabilizes (where it is supportable by network effects). Indeed, the  

market share bubble induced by disloyal agents, relying on discount, bursts with discount termi-

nation. While Scenarios 1 and 3 depict the market sharing regime, the second scenario resembles 

the winner-takes-all in the ride-sourcing market. 

4. CONCLUSIONS 

In this research, we shed light on the dynamics of ride-sourcing market in which two platforms 

compete with each other and the public transportation (for travellers) and reservation wage (for 

drivers). We use our day-to-day coevolutionary model featured by the S-shaped learning curves 

to capture the rise and fall of the system in MaaSSim. Our results underpin how correlation inside 

the ride-sourcing choice nest significantly affects the total market share of ride-sourcing plat-

forms, which calls for further empirical studies. Assuming a moderate correlation rate, we 
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analysed the competition in three different scenarios. We found that platforms with late entry to 

the market require more subsidies to trigger the cross-side network effects. However, subsidies 

can induce market share bubble for the platforms which can easily burst with the termination of 

subsidies, i.e., the platform stabilizes later, on the market share supportable by the network effects. 

We conclude that ride-sourcing market reaches an equilibria in long term, and both the “winner-

takes-all” and the “market sharing” are the possible competition outcomes. Nevertheless, the mar-

ket remains sensitive and late-entry alternatives may still reach significant market shares, master-

ing the network effects.  
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