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Short summary

Implementing cycling infrastructure for road users has become a popular transport policy for cities
to create a sustainable urban environment nowadays. A thorough understanding of bicycle traffic
is required to evaluate new infrastructure designs. To fill the remaining knowledge gap in this
aspect, this study aims to investigate bicycle traffic flow characteristics on dedicated bike lanes.
A microsimulation tool is used to simulate various scenarios and compute bicycle traffic states.
From the simulation results, bicycle flow characteristics presented at both link and network levels
are identified and discussed. The findings are expected to be applied to future research regarding
large-scale bicycle traffic flow modeling.
Keywords: Bicycle flow; Dedicated bike lane; Fundamental diagram; Macroscopic fundamental
diagram; Microscopic traffic simulation; None-lane-based traffic

1 Introduction

Cities have been planning to expand dedicated cycling infrastructure over urban areas to enhance
the usage of this active transport mode and foster a more sustainable transport environment
(Pucher & Buehler, 2017). In E-Bike City project, we aim to allocate around 50% of the existing
urban road space to cyclists and other slow modes (D-BAUG ETH Zurich, 2022). It is envisioned
that cycling will become a primary transport mode in the city. Therefore, urban transport systems
need to be re-designed to meet the growing cycling demand. However, traffic and transport mod-
eling nowadays often regards cycling as a auxiliary mode and ignores its congestion dynamics. An
in-depth and universal understanding of bicycle traffic flow characteristics is still lacking, which
hinders the planning for quality cycling infrastructure.

In fact, there were plenty of studies which focused on bicycle traffic flow in the past decades. At
microscopic level, bicycle flow was often simulated by cellular automata (CA), which is a simple
discrete time and space model (Gould & Karner, 2009; Jiang et al., 2004). Although there has
been much research endeavor attempting to overcome its discrete space limitation by introducing
various extensions, CA still fails to account for the large behavioral heterogeneity nature of bi-
cycle flow. There were also studies developing social force models which can better consider the
two-dimensionality of cycling motion (Liang et al., 2018; Zhao & Zhang, 2017). However, they
were known to be too computationally expensive for large-scale modeling purposes. Twaddle et al.
(2014) provided a thorough review and comparison of different bicycle modeling approaches. On
the other hand, microsimulation tools seem to be a good option which lies between these two
types of approaches. Grigoropoulos et al. (2021) used SUMO to simulate the traffic performance
of a bicycle route in various scenarios. Nevertheless, SUMO simulates bicycles through its built-in
sublane function, which divides a bike lane into multiple sublanes for overtaking (Lopez et al.,
2018). The suitability of this setup in simulating bicycle traffic is questioned.

There were studies which investigated bicycle traffic flow with empirical data. By performing a
series of experiments, Wierbos (2021) analyzed the macroscopic bicycle flow properties, includ-
ing capacity, capacity drop, jam density, and queue discharge rate in different scenarios, such as
narrowing bottleneck, merging, and queuing at a stop line. However, the flow performance at
congested states was not reported. Through field observation, Li et al. (2015) constructed FDs for
bicycle-only paths with the presence of bottlenecks. It was found that bicycle traffic can maintain
a relatively high flow rate even when the density is larger than the critical density, which was
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different from the simulation results of the CA studies. However, the conclusion was based on an
arbitrary curve-fitting. There was no detailed description regarding the empirical observation after
the hypothetical critical density. Guo et al. (2021) also plotted FDs for the wide ring-shaped track
bicycle flow experiments they conducted. A similar trend that a constant flow rate remains across
a certain region of densities was discovered. It was inferred that this phenomenon was resulted
from the staggered formation of bicycles at high density situations which allowed the lateral space
to be utilized more efficiently. Therefore, the flow rate would not start decreasing right from the
onset of congestion. Still, we remain skeptical about the outcome of such effect on FDs since
(1) only few data points were generated in the study and (2) the FDs only specifically described
the traffic states of small wide ring-shaped track experiments, which might be very different from
the real-world cycling environment. More detailed explanations and reflection about the observed
phenomena are required. Hence, the FDs of dedicated bike lanes are yet to be explored.

At the network-level, the macroscopic fundamental diagram (MFD) of a bike lane network is of
interest. Little research effort has shed light on MFD for bicycle traffic in particular. Huang et al.
(2021) used empirical data to investigate the impact of bicycle flow and infrastructure design on
the shape of car MFD. Loder et al. (2021) first intended to capture the tri-modal interactions by
using multi-modal MFDs for each mode. The bicycle MFD was generated and fitted with empir-
ical data following the same method proposed for car MFD without careful consideration for the
unique bicycle flow properties. Later on, Huang et al. (2022) applied the concept of 3D-MFD on
car-bicycle traffic. Both empirical data and Vissim simulation were adopted to generate MFDs.
However, there was no specific discussion on the shape and properties of the resulting bicycle MFD.
To a certain extent, these studies still focused on the mixed car-bicycle traffic flow on urban roads.
Besides, they were based on scarce and heterogeneous bicycle flow data collected in the field. A
basic understanding of MFD for a dedicated bike lane network is still lacking.

To allocate more dedicated road space to bicycles considering its congestion dynamics within an
urban network, the aggregated bicycle traffic needs to be precisely described. FD and MFD are
two proper ways to model the network traffic performance. Hence, this study seeks to investigate
the characteristics of bicycle traffic flow by generating its FDs and MFDs.

2 Methodology

This section first describes the selection of microsimulation tool and the calibration of bicycle-
related simulation parameters. In the second part, the simulation environments and output anal-
ysis methods are explained.

As mentioned in section 1, empirical bicycle flow data containing complete traffic states are still
lacking. Therefore, instead of relying on empirical data, a microsimulation approach is adopted
in this study to investigate bicycle traffic characteristics at the aggregated level. Among all the
traffic simulation tool, PTV Vissim is believed to possess the most sophisticated bicycle simulation
function, which is not a simple projection of car traffic (PTV Group, 2023).

Compared to car driving behavior, tactical-level decisions play an even bigger role in cycling mo-
tion. In addition, bicycle traffic is not regulated by lane markings, which makes it more complex.
Vissim outperforms other simulation tools by including a built-in lateral model, which enables
it to simulate the special features of none-lane-based traffic, such as the overtaking behavior of
two-wheelers. Moreover, the diamond queue function represents the cyclists by a diamond shape
and makes the queue configuration more realistic, as pointed out in Gavriilidou et al. (2019). This
also influences the resulting standstill (jam) density and queue discharge rate. Vissim also allows
users to set the look ahead/back distance and number of interacting objects of each agent. This
function is helpful for simulating road users, like cyclists, which have better anticipation ability.

Although there may still be several detailed cycling behavior features which are not presented
in the bicycle simulation function in Vissim, it is hypothesized in this study that the function is
sufficient to reproduce the bicycle traffic dynamics at aggregated levels. All the bicycle modeling
parameters which need to be calibrated, including desired acceleration distribution, desired speed
distribution, car-following model parameters, and lateral model parameters, follow the setup sug-
gested in Kaths et al. (2021).
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To plot bicycle flow FDs, eight 300-m-long dedicated bike lanes with three different lane widths,
1.5 m, 2 m, and 2.5 m, are built in Vissim. Bottlenecks are placed in the middle of lanes 4 ∼ 8 to
generate congested situations. Two types of bottleneck are considered. The first type of bottleneck
on lanes 4 ∼ 6 reduces the path width by 0.5 m, while the second is 1-m-wide on lanes 7 ∼ 8.
Table 1 lists all the created bike lanes. The one-minute-aggregated density, speed, and flow data
are obtained from a 10-m-long segment before the bottlenecks on these bicycle paths. A five-hour
scenario with varying demand profile is implemented.

Table 1: Dedicated bike lanes for FD generation

Dedicated bike lane no. Lane width (m) Bottleneck width (m)
1 1.5 none
2 2.0 none
3 2.5 none
4 1.5 1.0
5 2.0 1.5
6 2.5 2.0
7 2.0 1.0
8 2.5 1.0

In addition to FDs, this study also aims to derive a bicycle flow MFD. An arterial with 2-m-wide
bike paths in two directions on both sides of the road is built in Vissim. Six intersections divide
the arterial into seven road sections. The green time at every intersection is 40 s, while the cycle
time equals to 70 s. Each road link is 150 m long. Accordingly, the signal offset is set to 35 s.
The average flow and density data are collected every five minutes from the ten road links in the
middle, excluding the inflow and outflow links. A fifteen-hour scenario is designed to mimic the
demand profile of a typical weekday, while the first half-an-hour is considered a warm-up period
for the network to be filled up.

3 Results and discussion

This section describes the analyzed simulation results and research findings based on the results.

Bicycle flow fundamental diagrams

Figure 1 shows the density-flow FDs of bike paths with different widths. In order to compare
the FDs of different lane widths in a convenient way, the density value is transformed into two-
dimensional. The y-axis also becomes flow rate per 1-m-width so that it can align with the
transformed density. By doing so, we keep the speed information (slope) meaningful.
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Figure 1: Flow-density FDs of bicycle flow on bike lanes with different lane widths
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The effect of different lane widths can then be discussed. As can be seen in Figure 1a, few data
points in the decreasing branch can be observed in the 1 m bottleneck case. Only little congestion
effect is shown, which indicates that bicycle traffic flow on 1.5 m width does not have significant
difference with the flow on 1 m width. Still, it implies that bicycles in free flow condition need
more than 1-m-wide lane space to execute overtaking maneuvers. The narrowing bottleneck does
impact the traffic volume. In addition, a large scatter of blue dots can also be observed near the
critical density. This may be resulted from the stochastic stop-and-go disturbance caused by the
desired speed heterogeneity.

Figure 1b plots the FD of the bicycle flow on 2-m-wide lane. Compared to the 1.5-m-wide lane,
the capacity is increased, indicating that there are more overtaking behaviors. By looking at the
blue dots in the free flow branch, one can see that it does not have the same large scatter near the
critical density as shown in the 1.5-m-width case, indicating that a wider lane width can handle
disturbance better. Furthermore, the green data points become more obvious in the decreasing
branch. Even though the lane width reduction is the same, the congestion effect is more significant
when the path width is 2 m before the bottleneck. This indicates that a 2-m-wide bicycle lane
allows cyclists to utilize the existing lane space more efficiently. By looking at the red dots, one
can also see that the capacity drop becomes more significant when the bottleneck is only 1 m wide,
which is caused by the larger lane width narrowing.

The FD of the bicycle flow on 2.5-m-wide lane, as shown in Figure 1c, has a smaller capacity per
unit lane width than the lane with 2 m width does, which seems to be non-intuitive. This means
that widening the lane width does not necessarily increase the degree of lane space utilization. On
the other hand, no obvious decreasing branch can be found in the case of the 2-m-wide bottle-
neck (green dots). These both indicate that the capacity of the bike lane with 2 m width is closer
to the performance limit of dedicated bicycle infrastructure compared to the other two lane widths.

Table 2 summarizes the FD attributes of each lane width. Note that the free flow speed is not
included here and will be discussed later. The capacity is determined by the point with the largest
flow rate, while the critical density is the density of the capacity point. The jam density values are
obtained by running simulations and placing a stop line on each lane. As can be seen in the table,
the jam density values are different in cases of different lane widths, which also demonstrates the
different degrees of lane space utilization.

Table 2: Shape attributes of FDs of bike lanes with different widths

1.5 m width 2 m width 2.5 m width
Capacity (bicycle/h/m) 882.24 1049.91 893.53

Critical density (bicycle/km/m) 113.92 117.32 102.23
Jam density (bicycle/km/m) 408.00 460.50 410.8

To sum up, bicycle flow on 2-m-wide bike lane can utilize the lane space most efficiently. There is
no improvement when widening the lane width to 2.5 m. This can also be understood by consider-
ing that the lateral space required by a cyclist is between 1 m and 1.3 m in the adopted Vissim setup.

Other than the difference between various lane widths, there are a few special characteristics of
non-lane-based bicycle traffic flow regarding the free flow speed. As can be seen in Figure 2a, which
is the speed-density FD of the bike lane with 2 m width in the case without bottleneck, the speed
decreases rapidly as the density increases. This is the result of large desired speed heterogeneity.
Bicycle flow is significantly slowed down by slow cyclists. Table 3 computes the average speed
values in six divided density ranges. It is believed that this phenomenon is more significant in
bicycle traffic than in car traffic. In addition to the speed heterogeneity, the effect of overtaking
is another special characteristics of bicycle flow which was often overlooked. Figure 2b shows the
results of a single-file bicycle traffic flow with no overtaking allowed. It can be observed that the
speed decreases more rapidly as the density increases than in the case with overtaking. In the
single-file case, cyclists loss the possibility to overtake slow cyclists, which further degrades the
bicycle flow performance. Therefore, it is important to consider these two aspects when modeling
bicycle traffic flow.
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Figure 2: speed-density FDs of bicycle flow on a 2-m-wide bike lane (a) with overtaking
(b) without overtaking

Table 3: Free flow speeds of bike lanes in six density ranges

Density (bicycle/km/m) Average free flow speed (km/h)
1.5 m width 2 m width 2.5 m width

0 ∼ 25 13.85 13.19 13.50
25 ∼ 50 10.66 11.75 11.98
50 ∼ 75 10.09 10.83 10.67
75 ∼ 100 8.38 9.82 8.81
100 ∼ 125 6.78 8.32 7.44
125 ∼ 150 5.28 7.19 —

On the other ahnd, the existence of a constant flow branch around critical density pointed out by
the previous studies cannot be observed from the FDs in Figure 1. It is suspected that the constant
flow may actually stem from the better anticipation behavior of cyclists on the short ring-shaped
track. The phenomenon may not appear in FDs of bike lanes in the real-world.

Bicycle flow macroscopic fundamental diagram

Figure 3 presents the MFD of the built bicycle lane arterial. The density variation is shown by the
color of each data point. From the figure, one can observe an MFD curve with low scatter, show-
ing the relationship between accumulation and network traffic performance can also be applied to
bicycle flow. There are only few deviated data points which are caused by hysteresis, as shown
by the color representing the normalized standard deviation of density. Since the simulation was
carried out on a homogeneous arterial with equal link lengths and signal timing plans, no obvious
decreasing branch can be observed.

The MFD is further analyzed by using the method of cuts (MoC) proposed by Daganzo and Geroli-
minis (2008). Each practical cut can be generated according to a moving observer speed and the
number of blocks the observer can pass through γ. In the previous subsection, it was mentioned
that the free flow speed varies a lot across different density values for bicycle flow. Therefore, this
study modifies the MoC for bicycle traffic. The free flow speeds calculated in Table 3 are used
to generate cuts. For each γ value, there is one corresponding speed. The saturation flow rate is
determined by several Vissim simulation runs. Note that unlike typical car traffic, the maximum
flow rates at a free flow lane segment and a stop line can be slightly different due to the staggered
queue formation. No cuts in the decreasing branch are generated since there is no congested traf-
fic state in the designed homogeneous arterial scenario. Figure 4 shows the cuts derived from the
modified method. Compared to the examples which use only a single average speed value in Figure
5, the modified method produces more accurate cuts.
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Figure 3: MFD of the bike lane arterial
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Figure 4: MFD of the bike lane arterial with cuts generated by the modified MoC
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Figure 5: MFD of the bike lane arterial with cuts generated by a single speed value
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In addition, a little decreasing trend can be observed after the critical density in the MFD although
no spillback situation occurs in the simulated scenario. The decreased average flow rate may be
the effect of anticipative cycling behavior. The speed of bicycles discharging from intersections
decreases when there are too many queuing cyclists at the downstream links. This is a special
phenomenon resulted from the look ahead behavior designed in Vissim. In this setup, cyclists look
further downstream to determine their following speed.

4 Conclusions

This study investigates the characteristics of bicycle traffic flow on dedicated infrastructure by
looking at FDs of different lane widths and an MFD of a bike lane arterial which are generated
from microsimulation. The identified features are discussed and compared with the findings in the
previous studies pertaining to bicycle flow modeling.

At link-level, it is found that lane widths greatly influences the FD attributes. A proper width can
be found based on the lateral space required by a cyclist so that they can utilize the lane space
in the most efficient manner. At free flow situations, the speed decreases as the density increases
due to the desired speed heterogeneity. However, the overtaking behavior mitigates such effect by
enabling bicycles to utilize the lateral space. On the other hand, the existence of a constant flow
branch, which was pointed out in the previous ring-shaped track experiment, on real-world bike
lanes is questioned.

This study also applies the MoC to derive the upper-bound MFD for bicycle traffic on dedicated
infrastructure. To the best of our knowledge, this is the very first attempt to discuss bicycle
MFD by using carefully-examined bicycle flow attributes. It is found that the modified method
can better capture the shape of an MFD for none-lane-based bicycle traffic where the behavioral
heterogeneity is large.

The results in this study largely depend on the setup in the microsimulation tool. Although the
representativeness of the calibrated built-in bicycle simulation model may be argued, the overall
macroscopic characteristics of bicycle flow observed from the FDs and MFD are deemed to be
valid. The findings can be used for more complex network-wide bicycle traffic modeling, such as
cell transmission model or MFD-based traffic assignment, and therefore assist dedicated cycling
infrastructure planning by transport authorities which seek to increase bicycle usage.
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