
1 
 

Modelling Travel Time Anticipation  
Under Rational Inattention and Endogenous Information Constraints 

 
Dimitrios Pappelis*1, Emmanouil Chaniotakis2, Tim Hillel3, Maria Kamargianni4 

 
1 Research Assistant, BSEER Energy Institute, University College London, UK, WC1H0NN 

2 Lecturer, BSEER Energy Institute, University College London, UK, WC1H0NN 
3 Lecturer, Civil Engineering, University College London, UK, WC1H0NN 

4 Professor, BSEER Energy Institute, University College London, UK, WC1H0NN 

 

SHORT SUMMARY 

Transportation research has been traditionally grounded on the economic theory of Rational 
Expectations, assuming that individuals are fully informed, optimizing, and self-interested 
decision makers. However, this assumption fails to sufficiently explain the inertia that 
characterizes travellers’ behaviour in face of uncertainty.  In recent years, there has been a rising 
interest in the theory of Rational Inattention, arguing that individuals choose to make seemingly 
suboptimal choices due to the cost of acquiring and processing available information. In this 
paper, we present a continuous quadratic Rational Inattention model of travel time anticipation. 
We showcase that its properties satisfy behavioural hypotheses derived from data collected 
through a case study in the city of Turin on within-day travel re-evaluation. We conduct 
simulation experiments and propose an alternative 2-stage framework for enhancing existing 
neoclassical travel behaviour models, indicating potential biases and discrepancies in the 
forecasted market shares, specifically with regards to rare travel time occurrences.  
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1. INTRODUCTION 

Transportation planning and policy making rely on models to predict and explain the behavior of 
travellers. Traditionally, research on this front has been based on the economic theory of Rational 
Expectations, assuming that individuals are fully informed, optimizing, and self-interested deci-
sion makers.  However, this assumption fails to sufficiently explain the resistance to change that 
characterizes travellers’ behaviour in face of uncertainty.  In recent years, there has been a rising 
interest in the Rational Inattention (RI) theory, originally developed by Christopher Sims (2003). 
The argument is that individuals consciously choose to make seemingly suboptimal choices due 
to the cost of acquiring and processing available information. In recent years, Matejka and McKay 
(2015) expanded the theory for discrete choice under imperfect information and cognitive capac-
ity constraints. As such, RI has emerged as a compelling and neat framework for further under-
standing the behavior of decision makers in complex and dynamic environments. 
 
In the context of transport modelling, Rational Inattention is still relatively unexplored. Fosgerau 
et al. (2019) and Jiang et al. (2020) defined the problems of route and departure time choice under 
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RI and provided simulation findings. Fosgerau et al. (2020) established the general equivalence 
between discrete choice and RI models, providing an alternate point of view in the interpretation 
of typical RUM models. From an application perspective, Habib (2022) investigated empirical 
use-cases and focused on estimable specifications of discrete choice RI models. 
 
In this paper, we present a continuous-quadratic RI model of travel time anticipation. We 
showcase that its properties satisfy our behavioural hypotheses derived from data collected from 
a case study in the city of Turin on within-day travel demand shift choices. We proceed to assess 
the model capabilities through numerical experiments and then propose a 2-stage framework for 
enhancing existing neoclassical models of travel behaviour, given the open challenges associated 
with data collection for RI phenomena. We indicate how ignorance of the priors and information 
capacity constraints could lead to potential biases and discrepancies in the forecasted market 
shares, especially with regards to rare travel time occurrences. 

2. METHODOLOGY 

Data Collection 

The motivation of this paper originates in the investigation of within-day re-evaluation and day-
to-day learning as described by Pappelis et al. (2022). In that study, a joint Revealed Preference 
and Stated Preference (RP-SP) experiment was applied to collect "pseudo" panel data on within-
day demand shift choices. The primary objective was to investigate individuals' adaptation strat-
egies when faced with travel time fluctuations on their habitual schedule, and how the accumu-
lated experience affects their future actions. Participants, whose travel patterns were initially rec-
orded using a smartphone tracking application, were provided with travel information for an up-
coming habitual trip, either during an activity or en-route to their destination. Given this infor-
mation, they were asked to record their response in the form of an adaptation strategy. The strat-
egy could involve modifying trip characteristics such as departure time, mode, or route, or chang-
ing the target activity through replacement or cancellation. At the end of each day, participants 
updated their anticipation of travel time for the following day based on accumulated experience 
and reported whether they would consider long-term adjustments to their habitual schedule.  
 
The described experiment allowed for the exploration of individuals' responses to travel time 
fluctuations and the implications on their future travel behavior. It was applied in the metropolitan 
area of Turin (IT) between February and April 2022, as part of a wider travel demand survey. 
Recruited individuals formed a stratified sample of the travel survey participants, which is repre-
sentative of the population in the Turin region (a survey company was hired for recruitment). The 
RP data collection was performed using a smartphone-based travel survey tool, the MobyApp. 
The habitual activity and travel patterns were tracked from the application in the form of travel 
diaries over the course of 7 days.  In total, 365 individuals accessed the experiment and 351 of 
them completed it, resulting in 702 tracked trips and 4212 observations.  
 
The dataset revealed some interesting behavioural findings with regards to inertia effects of travel 
behaviour and the concept of false certainty adoption. For instance, Figure 1 displays the number 
of trips categorized by re-evaluation strategy, based on the daily fluctuations in travel time. The 
level of fluctuation is determined by the travel factor parameter, which is multiplied by the habit-
ual travel time for a specific trip of the participant in each scenario. The analysis shows that for 
medium levels of travel time fluctuation, the dominant re-evaluation strategy is 'No change,' sug-
gesting that many individuals may prefer to stick with their habitual option rather than make 
changes, even if from a utility maximization perspective this can be seen as “irrational”. This 
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finding aligns with the concept of resistance to change, a heterogeneous factor across the popula-
tion. As travel time increases, schedule constraints and conflicts may increase stress, leading in-
dividuals to consider changing their travel plans (such as adjusting departure time, mode, or 
route). For extreme levels of travel time fluctuation, we observe the highest likelihood of cancel-
lation or replacement of the activity. 
 

 
Figure 1 Resistance to change for different levels of travel time fluctuation 

It is also important to study how the prior expectation of travel time evolves with accumulated 
experience. Figure 2 depicts the participants’ scaled anticipated travel time after each day, against 
the 2-day and 3-day moving average of different travel time orders used throughout the experi-
ment. We observe significant sluggishness and inertia in the travel time anticipation of the partic-
ipants, being influenced from their prior beliefs and experience. While Rational Expectations the-
ory would imply that external stimuli would cause stronger and fast responses, we observe much 
milder adaptations and a “magnet effect” towards the reference level of travel time. 
 

 
Figure 2 Inertia and sluggishness in travel time anticipation  
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Modelling Framework 

Based on these behavioural observations, we proceed to define the travel anticipation problem as 
a static model of choice under Rational Inattention (Mackowiak et al., 2021). Consider an agent 
who plans to perform a daily trip and receives an information signal 𝑠, in order to set her travel 
time anticipation 𝑎, subject to unknown network conditions 𝑡. Let the utility have the following 
log-quadratic form, 
 

𝑈(𝑎, 𝑡) = −𝑏(𝑎 − 𝑡)! 
 
The agent is tracking the unknown random state of the network, which under perfect information 
would be equal to her anticipation. Naturally, this would allow the agent to construct her subse-
quent travel plans most accurately (e.g., departure time, mode, route). However, as the true travel 
time is infeasible to observe constantly and travel information comes at a perceptual cost, the 
agent chooses to receive noisy information that determines the posterior beliefs that she may hold. 
The utility parameter 𝑏 is a scaler, which can account for agent’s heterogeneity with regards to 
traffic information seeking. Under the general quadratic form, we assume that over or under-
estimation of travel time incurs equal losses. In many cases, delayed arrivals might incur costlier 
losses, so it is worth studying different variants of the utility function going forward. The objec-
tive of the agent is to maximize the expectation of her utility less the cost of information C(f), 
which is a function of the information strategy, 
 

𝑚𝑎𝑥
"

∫𝑈(𝑎, 𝑡)𝑓(𝑎, 𝑡)𝑑𝑡𝑑𝑎 − 𝐶(𝑓) (1) 

 
The joint probability f(𝑎, 𝑡) is sufficient to describe the choice of information and action, as they 
are derived such that no two signals lead to the same action. Otherwise, the agent would be wast-
ing attentional resources by distinguishing between signals that do not directly affect their actions. 
As a result, it is possible to make a one-to-one association between the signal and action and 
analyse the relationship between attention, allocation, information acquisition, and decision-mak-
ing in a unified framework. The objective function (1) is maximized subject to the following 
constraints, 

∫𝑓(𝑎, 𝑡)𝑑𝑎 = 𝑔(𝑡),  ∀𝑡 (2) 
 

The prior belief of the agent is described by the pdf 𝑔(𝑡). Constraint (2) ensures the consistency 
of the prior and posterior beliefs of the agent under Bayesian rationality. 
 

𝐶(𝑓) = 𝜆 ⋅ 𝐼(𝑎; 𝑡) = 𝜆 ⋅ [𝐻[𝑔(𝑡)] − 𝐸[𝐻[𝑡|𝑎]] (3) 
 

The cost function (3) is defined in terms of the mutual information between the agent’s anticipa-
tion and the actual travel time. It is based on the difference between the entropy of the prior 
distribution of travel times and the conditional entropy of the distribution of travel times given 
the agent’s prediction. The parameter λ typically referred to as the “attention cost” or “information 
cost” reflects the required effort of acquiring and processing the information.  

 
𝐻[𝑔(𝑡)] = −∫𝑔(𝑡)𝑙𝑜𝑔  𝑔(𝑡)𝑑𝑡 (4) 

 
Entropy (4) is quantified using Shannon's definition, which measures the amount of information 
present in the probability distribution of travel time. The cost function penalizes travel time pre-
dictions that require more attention to achieve a specific level of accuracy. By minimizing the 
difference between the prior and conditional entropy based on the prediction, the cost function 
encourages accurate predictions that require less attention. The solution to the agent's problem for 
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an unknown network state t has a probabilistic logit form. The solution of the agent’s problem for 
an unknown state of the network t is has the following probabilistic logit form. 
 

𝑓(𝑎|𝑡) =
𝑝(𝑎)𝑒#(%,')/*

∫ 𝑝(𝑧)𝑒#(+,')/* 
+ 𝑑𝑧

 

 
In most cases, RI problems do require numerical solution methods. A well-studied exception is 
the case of quadratic utility, Gaussian prior uncertainty, and an unbounded action space, where 
Gaussian signals are optimal Interestingly, for a bounded or truncated action space, the solution 
of the continuous problem is discrete, indicating that the agent contemplates only specific levels 
for a given choice, a phenomenon commonly observed in the stickiness of product prices. In the 
context of travel time, this would imply that travellers choose from a finite set of levels when 
updating their anticipation and might, for instance, set a regular departure time and standard 
“safety” departure when expecting a range of potential delays.  

3. RESULTS AND DISCUSSION 

The collection of data for the practical estimation of RI models is challenging, mainly because 
the concept of cognitive capacity constraints is abstract and difficult to measure. In the context of 
travel time anticipation and travel behavior, an ideal dataset would need to capture multiple fac-
tors simultaneously, including the agent's beliefs (i.e., their prior perception of the probability 
distribution of travel times), the world (i.e., network conditions such as travel time), attention 
allocation (i.e., the choice of signal or level of information), and action (i.e., the agent's choice).  
The design of such sophisticated experiments is an ongoing task in economics research. In ab-
sence of this complete dataset, we proceed to perform numerical experiments on the travel time 
anticipation model and then propose a 2-stage approach to enhance traditional neoclassical mod-
els of travel behaviour. 

Numerical Experiment 

To assess and showcase the properties of the modelling framework, we perform numerical exper-
iments that justify our behavioural hypotheses derived from the data analysis. A triangular prior 
distribution is assumed for the agents’ belief, a common approach in related studies (Figure 1).  
 

 
Figure 3 Triangular prior anticipation of trip travel time distribution 
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We then proceed to solve the RI problem (Eq.1-4) for two different levels of the marginal cost of 
information λ. The optimization problem was solved using the GAP-SQP geometric algorithm 
proposed by Armenter et al. (2021). Figure 2 presents the joint probability of anticipated travel 
times, as well as the conditional probability of the non-zero solutions (discrete choice set). It is 
apparent that the responsiveness of an action to a given state can be increased by altering the 
stakes or reducing the cost of information. When the stakes are high or the cost of information is 
low, individuals are more motivated to make accurate predictions of the travel time and allocate 
their attention accordingly, thus the plurality in possible actions. This increased attention leads to 
greater responsiveness of the action to the state, as individuals are more likely to adjust based on 
the information available to them. On the contrary, for lower stakes or high values of the infor-
mation constraints, the agent might only consider few alternatives and apply them over a range 
of states of the network. 

 

 
Figure 4 Simulated joint and conditional probabilities for higher (λ=0.03, left) and lower (λ=0.005, right) 

values of marginal information cost 

Empirical Findings 

The theory of Rational Inattention and the endogenous processing of information raise important 
questions about what traditional empirical methods, such as controlled experiments, capture in a 
transportation setting. This is particularly relevant for travel re-evaluation behavior, where it is 
most often assumed that individuals are fully aware and process all available advanced infor-
mation. Furthermore, in a revealed preference setting, such effects might already be captured in 
the data, thus there is a need to not only disentangle preferences, but also consider their equilib-
rium relationships with the supply side.  
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Given these open research challenges, we extend the travel re-evaluation framework developed 
by Pappelis et al. (2022). At this point, it is important to clarify that -in this context of RI- we are 
not referring to the cognitive constraints of the participant with regards to the experiment setting 
and attributes, which is also important to be controlled, but with the inattention to information 
(e.g., journey planners, radio) that would be observed in the transition to a real-world setting. 
Figure 5 illustrates a two-stage sequential framework for incorporating RI effects in the demand 
shift models. In the first stage, we utilize the continuous RI model to solve for travel time antici-
pation. In the second stage, we use the output of the RI model as a more realistic depiction of 
travel time when simulating dynamic demand shift decisions. 
 
 

 
Figure 5 Sequential approach for incorporating travel time anticipation under RI 

 
The model selected for the evaluation of the framework is the static Mixed Nested Logit, which 
was designed to generate the probability of specific adaptation strategies being selected, when 
faced with travel time fluctuation during a habitually performed trip. The nesting structure and 
the alternatives of the travel re-evaluation model are depicted in Figure 6 (see full paper for com-
plete specification). 
 

 
Figure 6 Demand shift model choice alternatives and nesting structure (Pappelis et al., 2022) 

Applying the 2-stage framework, we proceed to perform sensitivity analysis on the information 
cost parameter λ of the travel time variable, maintaining the assumption of the triangular distri-
bution, and then comparing the simulated market shares for different ranges of the travel time 
distribution. We observe that for severe delays (travel factor >2.5), the Rational Expectations 
model might overestimate the aggregate response of the travellers, especially when it comes to 
cancellation of a given trip. Comparing it to the extreme case of a marginal information cost above 
the threshold of any signal acquisition, a significant discrepancy of over 20% can be observed in 
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the market share of the “Habit” alternative.  On the contrary, for lower levels of travel time fluc-
tuation (travel factor <1.5), the Rational Inattentive agent might falsely overreact due to false 
signals, when she would be better off following her habitual schedule. Such discrepancies indicate 
the importance of measuring and accounting for the prior beliefs, the information processing con-
straints and marginal cost of information λ in travel behaviour modelling and forecasting. 
 

 
Figure 7 Forecasted shares for different levels of marginal information cost and travel time fluctuation 

4. CONCLUSION 

In conclusion, our paper highlights the potential benefits of incorporating Rational Inattention 
theory into transportation modelling and travel time anticipation in particular. Future steps include 
the extension of the framework to a dynamic setting, allowing for individuals to acquire informa-
tive signals which can also be used as predictors of future actions. Finally, the relevance and 
applicability of the RI theory in transportation needs to be further examined through the design 
of sophisticated data collection experiments. 
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