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Short summary

The estimation of the Design Hourly Volume (DHV) is an essential step for a tra�c assessment. At
freeway nodes, not all ramps are detected by permanent tra�c count (PTC) stations. Therefore
the German HCM recommends additional short-term counts (STC) to determine the DHV. Since
conducting STC is usually associated with high e�ort, the question arises whether the information
obtained by STC can also be derived from Floating Car Data (FCD). We propose an approach for
processing the FCD in order to apply it instead of the STC for the determination of the DHV at
ramp junctions. The performance of the method is evaluated on �ve nodes, for which FCD from
2017 and a reference database covering all 8,760 hourly volumes of all ramps and main lanes of the
road section are available. The result show, the usage of representative FCD days is possible.
Keywords: Design Hourly Volume Estimation, Floating Car Data, Highway Capacity Manual,
Permanent Tra�c Counts

1 Introduction

Design hourly volume (DHV) estimation is an essential step when it comes to estimating the Level-
of-Service (LOS) of tra�c facilities. In the Highway Capacity Manual (HCM, National Academies
of Sciences (2016)) and the German HCM (FGSV (2015)), the DHV is determined based on a
tra�c volume estimation concept known as the nth hour or respectively the hour of the year with
the nth highest tra�c volume. To calculate this nth hour precisely, a permanent tra�c count (PTC)
station is necessary at the corresponding tra�c facility, since the tra�c volume for all 8,760 hours
of the year must be known. To determine the DHV at ramp junctions of nodes, supplementary
short-term tra�c counts (STC) are also necessary since, usually, not all ramps are recorded with
PTC. The German HCM proposes a method for this process, which was validated and enhanced
to a concept of the nth highest saturated hour by Baumann et al. (2023).
The method proposed by the German HCM determines the representative turning �ows at the
node from STC on the ramps, which are then extrapolated to the DHV using the PTC available at
the node. Conducting STC is generally associated with high e�ort, which is why the question arises
if the required representative turning �ows can be determined using Floating Car Data (FCD).
Ceccato et al. (2022) demonstrate that the use of FCD is competitive compared to traditional data
sources in terms of cost-e�ectiveness. Furthermore, Vogt et al. (2019) and Dabbas et al. (2020)
show that the data fusion of FCD and PTC enables the estimation of origin-destination matrices for
motorway networks. Travel times and route choice probabilities derived from FCD can moreover
be used as input for Dynamic Tra�c Assignment models to map OD matrices to link �ows (Nigro
et al. (2018); Tsanakas et al. (2022)). Nohekhan et al. (2021) use FCD, temporary volume counts
(e.g., a week), and road characteristics to estimate hourly tra�c volumes on o�-ramps. FCD can
also be used to determine travel time (Olszewski et al. (2018)), free �ow speed (Diependaele et al.
(2016)), or operating speed (Bruwer et al. (2021); Lobo et al. (2018)) on motorways.
The literature review demonstrates that tra�c �ow assessment using FCD is possible, but to the
best of the authors' knowledge, there are no approaches in the literature that use FCD to determine
the DHV in the context of the HCM, German HCM, or similar international guidelines. Therefore,
this paper examines the potential of using FCD as a substitute for STC in estimating the DHV at
nodes. We propose an approach for processing the FCD and evaluate the results afterward using
FCD of route sections with a total length of 15 km and compared with STC results from Baumann
et al. (2023).
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2 Methodical approach

Concept and data availability scenarios for DHV estimation at freeway nodes

An example of how to combine PTC and STC using topological relationships of a freeway inter-
change is shown in the German HCM. It assumes that a cloverleaf interchange has eight PTC,
one for each in�ow or out�ow, and at least two STC for each ramp junction. Each PTC de�nes a
speci�c demand-situation, which needs to be analyzed. In the following, these demand-situations
are referred to as PTC demand-situation. Each PTC demand-situation describes a temporary
state with consistent tra�c �ows at the entire interchange, such that in�ow equals out�ow. In
the German HCM these demand-situations are de�ned using the method `50th hour of the PTC'.
In this example it leads to eight demand situations, which may occur on di�erent weekdays and
times of day. STC are usually conducted at a di�erent date. Therefore, the German HCM uses
the day hour of the PTC demand-situation to derive a second demand-situation based on the STC
(STC demand-situation). In the next step a matrix estimation method is applied using the PTC
demand-situation as boundary conditions and the STC demand-situation as initial matrix to derive
DHV for each count station. This procedure is repeated for all eight PTC demand-situations of
the cloverleaf inter-change. After that, all eight demand-situations are evaluated. For each ramp
junction, a separate saturation rate is estimated per demand-situation. The resulting saturation
rate of a ramp junction is the worst-case saturation rate of all demand situations considered.
For this concept for DHV estimation at freeway nodes we compare the usage of tra�c �ows derived
from FCD instead of STC. Furthermore, the number of PTC can be varied. To understand the
impact of these data sources, the following data availability scenarios are de�ned and will be
analyzed:

1. `PTC: in-/out�ow main lanes, STC: -`: This data availability scenario again uses no STC
data, but the numbers of PTC stations are reduced to one count station for each in�ow
or out-�ow on the main lanes of the node. This leads to eight PTC stations at a four-leg-
interchange and to four PTC stations at a freeway exit.

2. 'PTC: in-/out�ow main lanes, STC: all': This data availability scenario adds STC informa-
tion for all counting stations (Figure 4, third row).

3. 'PTC: in-/out�ow main lanes, FCD: all': This data availability scenario equals the data
availability scenario above but uses FCD information instead of STC.

4. 'PTC: in-/out�ow main lanes, FCD: representative tra�c days': This data availability sce-
nario uses representative tra�c days obtained from FCD instead of single days.

Data basis

Hourly FCD-hits are available for 164 working days in 2017 on route sections with a total length
of 15 km. 'Hits' refer to the number of vehicles recorded. The number of hits is a subset of the
total tra�c volume. The route sections are part of 63 ramp junctions for whom PTC are available.
Missing hits on some count stations are derived based on adjacent hits. The ramp junctions are
part of �ve nodes: two interchanges and three freeway exits.

Preprocessing to generate consistent FCD for all count stations

An initial plausibility check reveals some inconsistencies:

� There are some negative values as results of balancing checks considering the topology.

� Con�icts appear if several FCD route sections can be assigned to the same count station,
leading to an over determination of some count stations by FCD route sections.

Thus, a matrix estimation procedure is executed to get consistent FCD using the VFlowFuzzy
algorithm implemented in PTV Visum (PTV AG (2022)). This implementation allows to de�ne
tolerances for each count station in case the hits are too inconsistent. For each hour the related
hourly hits are considered and tolerances are increased successively until a solution of consistent
hits is found. If no solution is found, it is analyzed which count station has implausible hits. This
allows us to ignore these values or increase the tolerance for these count stations.
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Generate representative tra�c days

In order to get more robust daily hits, we use the amount of FCD days to generate representative
tra�c days. A representative tra�c day has a daily distribution, which occurs as often as possible
in this or a similar way.
A method suitable for matching the properties of daily distributions is cluster analysis.
We de�ne three types of tra�c days:

� Monday

� Tuesday, Wednesday and Thursday

� Friday

For the cluster analyses of a tra�c day type we use network load curves containing daily hits of all
count stations for the days belonging to the tra�c day type. Depending on the size of the distance
measure and the clustering algorithm, there will be a di�erent number of clusters and consequently
a di�erent distribution of days per cluster.
We use the average linkage cluster algorithm and the GEH value serves as distance measure for the
comparison of hourly tra�c volumes. The cluster containing most days is de�ned as main cluster.
The smaller the maximal allowed distance, which is given is input by the user, the more clusters
there are. However, the days in a cluster are more similar with a lower distance measure, the
main cluster is more characteristic and it is less in�uenced by smoothing due to averaging of more
divergent days.
We choose GEH 6, resulting in main cluster that represent about 50% of the days belonging to the
tra�c day type (table 1).

Table 1: result of cluster analysis using GEH-value ≤ 6.

tra�c day days total number of

clusters

days in main

cluster

share of days

in main

cluster

Mo 32 9 18 56%
TuWeThu 96 22 51 53%
Fri 34 9 16 47%

DHV estimation combining FCD and PTC on nodes

To adapt the DHV estimation at nodes as described above to representative FCD days, we calculate
for each PTC demand-situation scenarios for all representative days. This leads to three scenarios
per PTC. The day hour of the PTC demand-situation de�nes the hour of the representative day.
Then the day hour of the representative day is used to get the tra�c �ow matrix. After that, the
process using matrix estimation and determination of the worst-case saturation is the same.

3 Evaluation

Combining PTC and FCD enables the DHV estimation for each ramp junction of a node. In
this study, the DHV is de�ned as the 50th hour as it is the common standard in Germany. Since
a consistent determination of the 50th hour based on the tra�c volume is not possible at ramp
junctions due to several tra�c �ows, the 50th highest saturated hour (calculated according to the
methods of the German HCM) is used instead of the hour with the 50th highest tra�c volume
(Baumann et al. (2023)).
For all nodes a reference database is available that provides all 8,760 hourly volumes of 2017 for
all ramps and main lanes (Baumann et al. (2023)). The reference database enables the calculation
of the saturation of each ramp junction for all hours. So the actual 50th highest saturated hour
can be determined for each ramp junction, which is referred to as the reference scenario in the
following. In order to analyze the performance of the proposed method, the method is applied
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Figure 1: Exemplary results of a node for an estimation scenario using FCD representative
days.

to all ramp junctions of the nodes considered, and for each ramp junction, the obtained results
(referred to as estimation scenario in the following) are compared with the reference scenario.
Figure 1 shows the correlation between reference and estimation scenario exemplary for all ramp
junctions of a node. Each point represents the result of one ramp junction. The colored squares
illustrate the corresponding LOS according to the German HCM. If a point is located in one of
the squares, the saturation rate of the estimation scenario results in the same LOS as that of the
reference scenario. Otherwise, the estimation scenario di�ers from the target LOS of the reference
scenario. For a further aggregation of the results, we introduce the metric of the `average LOS-
accuracy'. Based on the results of the estimation scenario, this metric describes the relative share
of the estimation scenario that achieves the target LOS of the reference scenario. Regarding the
visualization in �g. 1, this corresponds to the proportion of points located within one of the colored
LOS squares.

average LOS-accuracy =
n(LOSes = LOSrs)

n
(1)

with n = number of estimation scenarios
LOSes = calculated LOS of estimation scenario
LOSrs = LOS of corresponding reference scenario

n (LOSes = LOSrs) = number of estimation scenarios, which hit the LOS of their
reference scenario

4 Results and discussion

The aggregated results for 63 ramp junctions on the several data availability scenarios are shown
in table 2, �g. 2 allows a less aggregated and more detailed view. Figure 2 shows the range of
saturation for the STC and FCD scenarios for some ramp junctions. Additionally the results of
the reference scenario and for the data availability scenario considering clusters as representative
tra�c days are included in the �gure.
The results lead to the following conclusions:
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Figure 2: saturation using di�erent data availability scenarios for some ramp junctions.

Table 2: LOS-accuracy for di�erent data availability scenarios.

data availability scenario LOS-

accuracy

LOS-

under-

estimation

LOS-over-

estimation

number

of ramp

junctions

`PTC: in-/out�ow main lanes,
STC: -`

33% 2% 65% 63

'PTC: in-/out�ow main lanes,
STC: all'

87% 3% 10% 63

'PTC: in-/out�ow main lanes,
FCD: all'

73% 10% 17% 63

'PTC: in-/out�ow main lanes,
FCD: representative tra�c
days'

78% 10% 12% 63

� STC or FCD on all ramps are crucial for an accurate estimation of the DHV.

� The method recommended by the German HCM - conducting STC at all ramps of a node
with subsequent matrix correction or extrapolation at the nearest PTC stations - provides
a data basis with which the hour with the 50th highest saturation is well met.

� Nevertheless, the saturation (and LOS) varies, depending on the day on which the STC is
conducted.

� In this context, it must be taken into account that for the STC considered, it is assumed for
reasons of convenience that the results of STC and PTC derive from the same year, while
for practical reasons the STC is often conducted a year after the year of the PTC.

� The proposed FCD method underestimates the tra�c �ow on ramps in some cases.

� Using representative days slightly improves the LOS-accuracy.

For further research it would be interesting to expand the approach of using FCD as introduced in
this paper to additional nodes or data sources. Further evaluation of the robustness of clustering to
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get representative tra�c days is necessary. Furthermore, it can be expected that the performance
of the proposed method will increase in the future, as the availability of FCD will improve and will
thus lead to more representative results.
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