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Short summary

Agglomeration economies arising from the spatial concentration of economic activity have been
known to exist and induce higher productivity for firms. The existing empirical evidence, however,
has two key caveats. First, it mostly assumes a pre-specified (mostly log-log) functional form for the
relationship between firm productivity and agglomeration. Second, it may lack valid instruments
to adjust for potential confounding biases (for instance, from the omission of characteristics of
local input and output markets) in the estimation of this relationship. This study adopts a flexible
Bayesian Non-Parametric Instrumental Variables based approach to quantify non-linear effects
in agglomeration economies. The approach uses innovative external instruments derived from
traffic casualty data. We adopt a two-step framework: we first isolate the firm’s total factor
productivity from a Cobb-Douglas production function and thereafter estimate the non-linear
effects of agglomeration on this productivity. Using data from a sample of firms classed into six
key industry sectors in England, we present novel evidence that indicates the presence of significant
non-linearities in agglomeration elasticities for most industry sectors. Our results provide critical
inputs for the appraisal of transport investments.
Keywords: Agglomeration; Cost-benefit Analysis; Wider Economic Impacts; Elasticity; Non-
parametric statistics; Bayesian machine learning.

1 Introduction

Transport investments are frequently aimed at bringing economic and social benefits to the econ-
omy. However, given their scale, it is important for policymakers to have a rigorous apriori under-
standing of the magnitude of potential benefits arising from the investment. Cost Benefit Analysis
(CBA) provides a well-established theoretical basis to measure these benefits ex-ante and thus
warrant such extensive investments (Graham & Gibbons, 2019; A. Venables et al., 2014; Mackie
et al., 2012). CBA recasts the costs and benefits of the investment in monetary terms to estimate
the net change in social welfare arising from the transport improvement.
The current appraisal process embraced in the UK’s Transport Analysis Guidance (TAG) recognises
two broad categories of such welfare impacts: (1) Direct user benefits (DUBs) and (2) Wider
economic impacts (WEIs). DUBs consist of impacts on existing and new users of the transport
system, generated via changes in the generalised cost of travel (say, via alterations in travel time or
quality of service). Economic theory suggests that DUBs can capture all impacts under idealised
economic conditions: under perfect competition, constant returns to scale, and in the absence
of market failures. DUBs, therefore, formed the crux of the calculations in conventional CBA.
Nevertheless, the above-described market conditions are seldom encountered in practice, thus,
undermining the ability of DUBs to capture economic impacts in exhaustive detail. The scope of
CBA has therefore been extended, primarily in the past decade, to include the economic impacts
caused by market imperfections and externalities. Such wider group of impacts on the economy
are manifested in WEIs. The overarching aim of this paper is to revisit the empirical evidence on
WEIs of transport investments emerging via scale economies of agglomeration.

Background

Agglomeration economies are spatial externalities that arise when economic agents (individuals
and firms) locate in close proximity to each other, or in other words, locate within agglomerations
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of economic mass. Such proximity facilitates greater sharing, matching, and learning interactions
between agents, which are known to be the key drivers of agglomeration (Duranton & Puga, 2004).
For firms, agglomeration translates into benefits in form of improved labour market interactions,
knowledge spill-overs, specialisation, and increased sharing of inputs and outputs (Marshall, 1920).
Given these underlying benefits, economic theory predicts a positive impact of agglomeration on
the productivity of firms. Theory suggests two forms of agglomeration economies: (i) economies
of industry concentration or localisation economies, which includes benefits that occur through
enhanced specialisation; and, (ii) economies of urban concentration or urbanisation economies,
which result from the scale and diversity of markets (DfT, 2016). The former effects are external
to the firm but internal to the industry, while the latter are external to the firm and the industry
but internal to the urban area (or city) (Graham & Gibbons, 2019). Firms mostly experience the
two forms of agglomeration economies simultaneously. It is, therefore, difficult to disentangle the
two effects. The paper focuses on the quantification of urbanisation economies, which are typically
considered in appraisal calculations.
The impact of transport investments on agglomeration economies emerge from transport’s effect
on economic geography (distribution of individuals and firms) and consequent proximity between
economic agents (A. J. Venables, 2007). For fixed geography, transport improvements reduce the
generalised costs of interaction between agents in a cluster, thereby assisting interactions and
changing the effective density of the cluster. These effects are referred to as static agglomeration
effects. Transport investments can also bring about changes in economic geography by making some
locations more attractive to live and work, resulting in the relocation of individuals and firms. Such
movements lead to changes in the physical density of the cluster and facilitate new and different
interactions (DfT, 2016). These effects are termed dynamic agglomeration effects. Static effects
generally appear as a subset of the overall dynamic effects of a transport provision. Interestingly,
dynamic agglomeration effects may have a positive or negative impact on the productivity of
firms in a cluster depending on whether the spatial density of the cluster increases or decreases
as a consequence of the transport investment. In summary, the above discussion suggests that
if increasing effective agglomeration results in productivity gains for firms, and if transport has
an underlying role in determining effective agglomeration, then transport investments may induce
productivity benefits or disbenefits for firms. Therefore, comprehension of these productivity effects
is critical to developing a meticulous assessment of the impact of transport investments.
Consistent with the theory of urban agglomeration, the weight of empirical evidence in the literature
supports a significant positive relationship between agglomeration (often represented by city size or
the degree of access to economic mass (ATEM)) and productivity (measured by wages or by Total
Factor Productivity (TFP)) (see, for instance, Lall et al., 2004; Au & Henderson, 2006; Rosenthal
& Strange, 2008; Baldwin et al., 2010; Graham & Dender, 2011; Combes et al., 2012; Morikawa,
2011; Maré & Graham, 2013; Marrocu et al., 2013; Ahlfeldt et al., 2015). Elasticity estimates
from the literature range between -0.800 and 0.658, with an unweighted mean of 0.046 and median
value of 0.043 (refer to Graham & Gibbons, 2019, for a detailed review). The literature thus
indicates that agglomeration economies exist and cause higher productivity for firms and workers.
Nevertheless, the estimated magnitude of this effect varies substantially across studies. A meta-
analysis of the empirical literature conducted by Melo et al. (2009) indicates that such variation
results from contextual factors associated with the study design such as the nature of economies
and urban systems and the type of industry sectors under study. Additionally, Graham & Gibbons
(2019) highlights that the differences in estimated elasticities also result from the differences in
methodological approaches adopted in previous studies. While most studies concurrently assume
a log-log relationship between agglomeration and productivity, the approaches adopted to identify
this relationship vary substantially. In particular, Graham & Gibbons (2019) note that there are
considerable discrepancies in the extent to which these studies attempt to correct for potential
confounding biases in the estimation of this relationship.
Relatedly, Graham & Gibbons (2019) identify six potential mechanisms via which such biases
may emerge. First, confounding may occur due to the presence of unobserved firm-level sources
of productivity that are not only crucial to the firm’s choice of inputs, and thereby its TFP (see
Van Beveren, 2012, for details), but may be determined by local technology factors such as agglom-
eration. Second, confounding may also occur due to the absence of knowledge on a firm’s market
exit decisions (see Ackerberg et al., 2006, for details), which may be determined by agglomeration.
In particular, firms located in clusters of higher agglomeration may experience more competition,
which could result in the exit of less productive firms from the market. Third, confounding bi-
ases may emerge via unobserved heterogeneity in output prices of firms, which have a systematic
correlation with market competition, and thereby with agglomeration. Fourth, confounding may
appear due to spatial sorting or self-selection of firms, which occurs when firms within the same
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industry derive unobserved productivity benefits by engaging in different activities across different
locations. Such unobserved heterogeneity is often correlated with the level of agglomeration. Fifth,
the relationship between agglomeration and productivity may be simultaneously determined. As
shown by Graham et al. (2010), higher productivity locations may attract more private investment
over time leading to larger agglomeration and a consequent increase in productivity. Failure to
account for this reverse causality between productivity and agglomeration may produce biased and
inconsistent estimates of agglomeration economies. Finally, additional confounding may emerge
from unobserved components of local technology, such as specific characteristics of local input and
output markets, that may be determine both agglomeration and productivity. One of the key
objectives of this research is to deliver agglomeration elasticities that are robust to confounding,
and as such suitable to inform the appraisal of transport investments.

Overview of the Analysis

This paper estimates the relationship between agglomeration and productivity by adopting a two-
step approach Combes & Gobillon (2015). The first stage model within this approach estimates
TFP from the production function. The predicted values of TFP are then used as the dependent
variable in a second-stage regression on agglomeration, which delivers the agglomeration elasticities.
However, contrary to previous studies, we exploit the ability of this approach to model a flexible
non-parametric relationship between agglomeration and productivity. In particular, we note that
existing models in the literature mostly presume a Cobb-Douglas model for the agglomeration-
productivity relationship. We argue that while economic theory suggests a positive impact of
agglomeration on productivity, it does not necessarily imply that the relationship should be log-log.
Furthermore, contextualisation of agglomeration elasticities across studies (as discussed in Section
1) may be indicative of the variation of these elasticities over agglomeration. Hence, we assert
that parametric models with a predefined functional form may fail to capture the non-linearities in
the agglomeration-productivity relationship, thus delivering estimates of agglomeration elasticities
that may be biased.
To address this limitation, in this paper, we empirically estimate the relationship between agglom-
eration and productivity using a Bayesian non-parametric instrumental variables (NPIV) estimator
(Wiesenfarth et al., 2014) that allows us to (i) capture non-linearities in the relationship with a
non-parametric (NP) specification that does not require an assumed a-priori functional form, and
(ii) adjust for any confounding bias using instrumental variables (IVs). As discussed in Section
1, such biases may emerge from reverse causality or from the omission of important covariates.
Critical to the second point, we note that the literature may lack valid IVs for agglomeration, which
could hinder the identification of the agglomeration-productivity relationship. To overcome this
limitation, we recognise a novel external IV for agglomeration that is derived from traffic casualty
records. In particular, we consider the severity of traffic accidents among active mode and mo-
torcycle users during peak hours in a given location and time period as a relevant and exogenous
instrument for agglomeration in that location and time.
We apply the proposed approach to a sample of firms in England, divided into six key industrial
sectors: Manufacturing; Construction; Wholesale and Distribution; Transport; Information and
Communication Technology; and Finance. To measure the TFP of these firms, we make use of
an exhaustive panel dataset recorded by the Department of Trade and Industry. The data relate
to annualised accounting information provided by all companies registered in the UK. For the
purpose of this study, we consider the data between the years 2015 and 2019. Relevant measures
of agglomeration for this period are formed using employment records maintained by the Office for
National Statistics.

Contributions

The major contributions of this study can be summarised as follows:

1. We derive a novel external instrument from traffic accident data to identify the relationship
between agglomeration and firm productivity.

2. Our study delivers a novel comprehension of the non-linearities in agglomeration elasticities
across key industry sectors in England. For instance, we find the finance sector to be asso-
ciated with agglomeration diseconomies at lower levels of agglomeration and agglomeration
economies at higher levels of agglomeration. This result indicates the presence of a critical
economic mass beyond which productivity benefits set in for firms in this industry sector.

3



Interestingly, across all sectors, we note that the agglomeration elasticities take more ex-
treme values than those from a linear model. For instance, while the linear model suggests
agglomeration economies of magnitude 0.144 for firms in the finance industry, our non-linear
model finds the elasticity estimates to go up to a level of 0.710.

3. Quantification of non-linearities in agglomeration economies facilitates a novel understanding
of the spatial distribution of the productivity benefits of agglomeration across England.
Such a mapping could be instrumental in identifying the potential gainers and losers of
productivity benefits arising from a transport improvement.

The rest of this paper is structured as follows. Section 2 describes the data and the methodology
used to estimate the agglomeration elasticities. Section 3 presents the results from the empirical
study. Conclusions are drawn in the final section.

2 Model and Data

This section is divided into four subsections. The first subsection elaborates on the measure of
agglomeration used in this study. The second subsection discusses the adopted two-step approach
to estimate the relationship between agglomeration and productivity. The third subsection briefly
describes the Bayesian NPIV method in the context of this study. The final subsection discusses
the data used in this analysis.

Measure of Agglomeration

A crucial prerequisite to understanding the WEIs that arise from agglomeration is to develop a
suitable measure of agglomeration for each location or geographical zone. In line with the current
CBA practice in the UK, we represent agglomeration using ATEM, or in other words, the Mean
Effective Density (MED). The MED ρj for zone, j, j = (1, . . . , n), is calculated as follows:

ρj =
1

n

n∑
j=1

mjf(dij)

where mj represents a measure of economic activity in each zone j and f(.) denotes the deterrence
function, which is a decreasing function of the cost of travelling from origin j to destination k.
The measure is designed to capture the effects of the geographic centrality of the zones, their
size distribution, and the spatial distribution of economic mass (Graham & Gibbons, 2019). We
consider the zonal employment level Ejt as the measure of the economic activity of zone j and year
t and the inverse Euclidean distance between the centroids of each zone dαjk for the construction
of the deterrence function, where α is the distance decay parameter, generally assumed to take a
value of 1.0. The resulting MED for zone j in year t is thus:

ρjt =
1

n

n∑
k=1

Ekt

dαjk
. (1)

Agglomeration and Productivity

As mentioned in the Introduction, to quantify the impact of urban agglomeration on productivity,
we adopt a two-step approach. The first step involves estimating the TFP of a firm by constructing
its production function. The second step comprises regressing the estimated TFP values on the
chosen measure of agglomeration (that is, MED) to derive the agglomeration elasticities δρ, given
by

δρ =
∂ logω

∂ log ρ
(2)

We emphasise that we choose TFP over labour productivity measures such as wage rate as the
latter has the following disadvantages in the context of appraising WEIs. First, they can be de-
termined by transport improvements via routes other than productivity (for instance, via shifts in
labour supply). Second, while TFP is exclusively determined by local technology, output prices
and average labour skills; wages are additionally influenced by the relative prices of other factors
such as land and housing prices. Such dependability can introduce severe confounding biases in
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the estimation of agglomeration elasticities (Combes & Gobillon, 2015). Third, wage-based mea-
sures carry the assumption that the wage equals the value of the marginal product in competitive
equilibrium. However, the equality assumption seldom holds in practice as wages are typically
proportional to labour productivity (Combes & Gobillon, 2015). Lastly, wage-based measures only
provide a partial representation of productivity as they are limited to the impacts on the labour
input alone. Conversely, TFP provides a more comprehensive measurement of productivity with
respect to all inputs, which in the agglomeration context is more critical as agglomeration may
affect technology in several ways (Maré & Graham, 2009).

Step 1: Estimating total factor productivity

Consistent with the literature, we assume that the production of outputs Y s
it by a firm i in industry

sector s in year t to follow a Cobb Douglas production function structure with inputs; capital Ks
it,

labour Ls
it and materials Ms

it; as covariates:

log Y s
it = βs

k logK
s
it + βs

l logL
s
it + βs

m logMs
it + ωs

it + γst + esit (3)

where βs
k, β

s
l and βs

m are constants representing the elasticities of output with respect to the asso-
ciated factor of production. ωs

it is the unobserved efficiency or productivity of the firm, commonly
referred to as its Total Factor Productivity (TFP). TFP represents the efficiency level that re-
mains unobserved by the analyst, but is known to (or predicted by) the firm. γst are year dummies
that capture the year-specific effects on productivity and inflation. esit is a normally distributed
idiosyncratic error term, or in other words, all random shocks to the outputs. From equation 3,
the firm’s TFP ωs

it can be estimated as follows:

ω̂s
it = log Y s

it − β̂s
k logK

s
it − β̂s

l logL
s
it − β̂s

m logMs
it − γ̂st . (4)

Note that TFP affects the firm’s choice of input factors and market exit decisions, thus rendering the
variable factors of production, labour, and materials, endogenous in the model (De Loecker, 2007).
Identification of the model parameters and estimation of TFP thus requires careful consideration
of the potential confounding biases caused by the endogenous outputs. Following from the review
of the literature on TFP estimation by Van Beveren (2012), we make use of a panel control
function (CF) approach proposed by Ackerberg et al. (2006), which is an extension to Levinsohn
& Petrin (2003). Ackerberg et al. (2006)’s CF approach uses a function with materials and capital
as arguments to proxy for the endogenous unobserved productivity. This function is introduced
into the production function (equation 3) as an additional model component to obtain consistent
estimates of the model parameters.

Step 2: Estimating the effect of agglomeration on productivity

To estimate the causal impact of agglomeration on productivity, we consider the estimated TFP
ω̂s
it to be a function of the agglomeration measure ρsit indicating the MED of the zone j where the

firm i is located.
ω̂s
it = Ss(ρsit) + ηsit + ξsit. (5)

where ηsit consists of the unobserved characteristics of firm-level productivity. ξsit represents an id-
iosyncratic error term capturing all random shocks to the dependent variable. The exact structural
form of how ρsit enters the equation is unknown, so we adopt a non-parametric specification Ss(.)
in which the shape of the relationship is delivered from the data and regression splines. Note that
the percentage change in the estimated Ss(.) with respect to the percentage change in the model
covariate at any level of the covariate ρs gives the corresponding value of agglomeration elasticity
δρ,s.
We expect ηsit to be correlated with ρsit. This correlation follows from the presence of omitted
variables such as specific characteristics of local input and output markets, and functional or occu-
pational differences caused by spatial self-selection by firms (see Section 1 for a detailed discussion).
Further, the relationship between ρsit and productivity ω̂s

it may be simultaneously determined as
higher productivity locations may attract a greater level of private investment over time leading to
larger economic mass, which has a feedback effect on productivity. These estimation issues need to
be carefully addressed to ensure that the agglomeration elasticity estimates are, as far as possible,
causal rather than being simply associational. Therefore, we adopt a non-parametric instrumental
variables (NPIV) regression, which not only enables non-parametric specification of Ss(.) but also
addresses potential endogeneity biases.
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Bayesian Nonparametric Instrumental Variable Approach

IV-based estimators such as two-staged least square (2SLS) are widely adopted in applied econo-
metrics to estimate parametric models that contain endogenous covariates. However, finite-dimensional
parametric models (such as log-log models) for the relationship between agglomeration and pro-
ductivity, are based on assumptions that are rarely justified by economic theories. The resulting
model misspecification may lead to erroneous estimates of agglomeration elasticities. On the other
hand, non-parametric methods have the potential to capture the salient features in a data-driven
manner without making a priori assumptions on the functional form of the relationship (Horowitz,
2011). Therefore, a fairly growing strand in the econometrics literature proposes different ap-
proaches for NPIV regression, but such methods have not been considered in the estimation of
the agglomeration-productivity relationship. Extensive reviews can be found in Newey & Powell
(2003) and Horowitz (2011).
Classical (frequentist) NPIV regression approaches are popular in theoretical econometrics (Newey
& Powell, 2003; Horowitz, 2011; Newey, 2013; Chetverikov & Wilhelm, 2017), but they are chal-
lenging to apply in practice due to two main reasons. First, tuning parameters to monitor the
flexibility of S(.) are often required to be specified by the analyst. Second, standard errors are
generally computed using bootstrap, making these methods computationally prohibitive for large
datasets. Therefore, we adopt a scalable Bayesian NPIV approach, proposed by Wiesenfarth et
al. (2014), that can produce a consistent estimate of non-parametric S(.), even if the analyst does
not observe ηsit. This Bayesian method addresses both challenges of the frequentist estimation be-
cause it learns tuning parameters related to S(.) during estimation and uncertainty in parameters
estimates is inherently captured by credible intervals (analogous to classical confidence intervals).
In addition, it also enables nonparametric specification of the unobserved error component ξsit,
precluding the need for making additional assumptions.
We discuss the adopted Bayesian NPIV approach (Wiesenfarth et al., 2014) for a model with a
single endogenous covariate, that is,

ω̂ = S(ρ) + ϵ2, ρ = h(z) + ϵ1 (6)

Note that η are encapsulated in ϵ2, and z is an instrument for the endogenous regressor ρ. The
relationship between ρ and z is represented by an unknown functional form h(.) and ϵ2 is an
idiosyncratic random error term. For notational simplicity, we drop the firm-year subscripts and
sector superscripts. Bayesian NPIV is a control function approach, and assumes the following
standard identification restrictions:

E(ϵ1|z) = 0 and E(ϵ2|ϵ1, z) = E(ϵ2|ϵ1), (7)

which yields

E(ω̂|ρ, z) = S(ρ) + E(ϵ2|ϵ1, z) = S(ρ) + E(ϵ2|ϵ1)
= S(ρ) + ν(ϵ1),

(8)

where ν(ϵ1) is a function of the unobserved error term ϵ1. This function is known as the control
function.
Conditional on the availability of a valid instrument (see Section 2), Bayesian NPIV can correct
for confounding bias. To account for the nonlinear effects of continuous covariates, both S(.) and
h(.) (refer to equation 6) are specified in terms of additive predictors comprising penalised splines.
Each of the functions S() and h(.) is approximated by a linear combination of suitable B-spline
basis functions. The penalised spline approach uses a large enough number of equidistant knots
in combination with a penalty to avoid over-fitting. Moreover, the joint distribution of ϵ1 and
ϵ2 is specified using nonparametric Gaussian Dirichlet process mixture (DPM), which ensures the
robustness of the model relative to extreme observations. Efficient Markov chain Monte Carlo
(MCMC) simulation technique is employed for fully Bayesian inference. The resulting posterior
samples allow us to construct simultaneous credible bands for the non-parametric effects (i.e., S(.)
and h(.)). Thereby, the possibility of non-normal error distribution is considered and the complete
variability is represented by Bayesian NPIV. We now succinctly discuss specifications of the kernel
error distribution in Bayesian NPIV.
To allow for a flexible distribution of error terms, the model considers a Gaussian DPM with
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infinite mixture components, c, in the following hierarchy:

(ϵ1i, ϵ2i) ∼
∞∑
c=1

πcN(µc,Σc)

(µc,Σc) ∼ G0 = N(µ|µ0, τ
−1
Σ Σ) IW(Σ|sΣ, SΣ)

πc = υc

1−
c−1∑
j=1

(1− πj)

 = υc

c−1∏
j=1

(1− υj),

c = 1, 2, ...

υc ∼ Be(1, ψ).

(9)

where µc, Σc and πc denote the component-specific means, variances and mixing proportions.
The mixture components are assumed to be independent and identically distributed with the base
distribution G0 of the Dirichlet process (DP), where G0 is given by a normal-inverse-Wishart
distribution. The mixture weights are generated in a stick-breaking manner based on a Beta
distribution with concentration parameter ψ > 0 of the DP. The concentration parameter ψ
determines the strength of belief in the base distribution G0.

Estimation Practicalities

We exclude discussion of the Gibbs sampler of Bayesian NPIV for brevity and focus mainly on
implementation details and posterior analysis. Interested readers can refer to Wiesenfarth et al.
(2014) for the derivation of conditional posterior updates.
We use the BayesIV and DPpackage in R to estimate the Bayesian NPIV. We consider 50,000
posterior draws in the estimation, exclude the first 15,000 burn-in draws and keep every 10th draw
from the remaining draws for the posterior analysis. The point-wise posterior mean is computed
by taking the average of 3,500 posterior draws. Bayesian simultaneous credible bands are obtained
using quantiles of the posterior draws. A simultaneous credible band is defined as the region Iθ
such that PS|data(S ∈ Iθ) = 1 − θ, that is, the posterior probability that the entire true function
S(.) is inside the region given the data equals to 1− θ. The Bayesian simultaneous credible bands
are constructed using the point-wise credible intervals derived from the θ/2 and 1− θ/2 quantiles
of the posterior samples of S(.) from the MCMC output such that (1 − θ)100% of the sampled
curves are contained in the credible band. A similar process is used to obtain the credible intervals
of h(.).

Instrumental Variable

To satisfy the identification restrictions presented in equation 7, we need an instrumental variable
(IV) z. The IV should be (i) exogenous, that is, uncorrelated with ϵ2; (ii) relevant, that is,
correlated with the endogenous covariate ρ, conditional on other covariates in the model.
We derive valid external instruments from traffic casualty data. We consider the ratio of serious
and severe traffic casualties to total casualties among active mode (pedestrians and cyclists) and
motorcycle users during morning and afternoon peak hours (that is, 6:30-10:30 hours and 16:00-
20:00 hours) in zone j in year t as an IV zjt for the MED (agglomeration) rhojt in zone j and
year t. We argue that as the MED of a city increases, peak-hour road network congestion in the
city may also increase, and consequently, the average speed of travel in the network may decrease.
As a result of slower vehicular speeds, the proportion of serious and severe traffic casualties to
total casualties among active mode and motorcycle users during peak hours may decrease. Our
argument follows from the traffic safety literature that suggests that a decrease in congestion may
exacerbate the severity of peak-hour traffic casualties amongst active mode users and cyclists (Li
et al., 2012; Noland et al., 2008). We thus expect a strong negative correlation between the chosen
IV zjt and the endogenous covariate ρjt. Nevertheless, we argue that the chosen IV is exogenous
because we do not expect the IV to scale with city size (population) and affect labour supply, and
therefore, not directly determine the response variable (that is, TFP) of any firm i located in zone
j and year t. In other words, we do not anticipate the chosen IV zjt to feature in a model for the
response variable ωjt.

Data

To gauge the presence of non-linearities in agglomeration elasticities, we consider a sample of
firms in England as our case study. We consider the period between 2015 to 2019 as the study
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period. For this period, we investigate the causal impact of MED and productivity in six most
relevant industry sectors: Manufacturing (MAN), Construction (CON), Wholesale and Distribu-
tion (WAD), Transport (TRA), Information and Communication Technology (ICT), and Finance
(FIN). As geographical regions or zones, we consider the Middle Layer 2011 Census Super Output
Areas (MSOA11) in England, which includes a total of 6,791 units with a mean population of 8185
people.
The data sources for the key variables of interest are detailed in the next two subsections.

Mean Effective Density

We obtain the data on annual employment levels in each MSOA11 unit from the Business and
Employment Register available at Nomis1 (official census and labour market statistics), a public
repository maintained by the Office for National Statistics (ONS). To calculate the distance between
the MSOA11 units, we extract the location information on MSOA11 units available in the ONS
Postcode Directory2, that is a detailed location database of all UK postcodes.
Traffic casualty data for the construction of IVs is obtained from the publicly available road safety
data, maintained by the Department for Transport3.

Total Factor Productivity

The Department of Trade and Industry records all the accounting information provided by all
companies registered in the UK. This information is available via the commercial software package
Financial Analysis Made Easy (FAME)4, co-hosted by Vistra and Bureau Van Dijk. To estimate
the production function in equation 3, we extract the annual data on the following variables for
each registered firm:

1. Turnover (output): The net income of the company.

2. Fixed Assets (capital): The depreciated value of buildings, plants and equipment.

3. Current Assets (materials): The current stocks and debt owned by the company.

4. Total Employees (labour): The total number of employees in the company.

To limit potential endogeneity biases emerging from spatial self-selection by firms (Graham &
Gibbons, 2019), we remove firms with more than one trading address and those that have a
registered office address different from the main trading address. We also filter out firms with
international subsidiaries. Additionally, we only focus on small and medium-sized firms with
a number of employees between 10 and 249 to reduce endogeneity from spatial self-selection of
labour (Graham, 2009). Finally, we class the filtered data into the six industry sectors using their
two-digits Standard Industrial Classification 2007 (SIC07). The resulting number of observations
for each industry sector is reported in Table 1.

Table 1: Classification of firms into industry sectors.

Industry Sector SIC07 Firms Observations
MAN 10-33 842 4210
CON 41-43 368 1840
WAD 45-47 688 3440
TRA 49-56 246 1230
ICT 58-63 357 1785
FIN 64-74 1452 7260

3 Results and Discussion

This section is divided into four subsections. In the first subsection, we describe our MED estimates
for England. In the second subsection, we briefly visit the estimated parameters of the production
function for various industry sectors and the estimated TFP values. In the penultimate subsection,

1Availble at https://www.nomisweb.co.uk/.
2Available at https://geoportal.statistics.gov.uk/.
3Available at https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/

road-safety-data.
4Available at https://fame.bvdinfo.com/version-202274/fame/1/Companies/Search.
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we discuss the agglomeration elasticities obtained from the Bayesian NPIV estimation. Using these
estimates, we also describe the spatial distribution of agglomeration benefits in England. In the
final subsection, we present the estimated kernel error distributions to illustrate the importance of
the non-parametric DPM specification. The relevance of our instruments is also demonstrated in
this subsection.

Estimated Mean Effective Densities

Table 2 presents the summary statistics for the estimated MED values for each MSOA11 in Eng-
land. The table indicates that the distribution of MED values in England is positively skewed.
While some zones have high levels of MED or agglomeration, most zones have low values. Thus,
only a few zones in England show high values of agglomeration. This observation is further sup-
ported by Figure 1, which maps MED values constructed using total employment in 2019 as mass.
This figure illustrates that whereas regions in and around cities like London, Manchester, and Birm-
ingham correspond to higher levels of agglomeration, they only constitute a small geographical area
in England.

Table 2: Summary of estimated MED for England.

Statistic 2015 2016 2017 2018 2019
Mean 3934.64 4008.44 4071.00 4091.90 4154.83
Median 3375.18 3435.73 3480.50 3502.10 3550.63
Std. dev. 2272.62 2328.46 2374.13 2397.93 2450.14
Max 19706.27 20297.82 20745.36 21064.78 21694.94
Min 663.97 675.28 684.24 687.70 697.25
Skewness 2.43 2.44 2.44 2.48 2.50

Figure 1: Map of MED values for England with total employment in 2019 as mass.

We complement the above-described statistics with Figure 2, which provides a histogram of the
MED levels experienced by firms in each industry sector. We note from this figure that the
majority of firms in the CON, MAN, TRA, and WAD sectors tend to locate in areas with MED
values less than 6000. From a strategic point of view, firms in these sectors require large factories
or warehouses. They may, therefore, prefer to locate these facilities in the periphery of cities where
land prices, rents, and other costs are lower. Nonetheless, additional local maxima in their density
plots at higher levels of MED also reveals the presence of a small number of firms in city centers,
which may choose to locate their offices in central business district (CBD) for an easy commitment
and location status. Conversely, firms in the ICT and FIN sectors, primarily tend to spread across
the CBD, to avail the above-mentioned advantages. In the rest of this section, we quantify how
these location choices translate into productivity benefits for firms.
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Figure 2: Histogram of agglomeration levels experienced by firms in 2019.

Estimated Total Factor Productivity

The parameter estimates of the production function, given by equation 3, for the six industry
sectors are summarised in Table 3. We note that the FIN, ICT, MAN and WAD sectors are
associated with returns to scale (RTS) values less than one, that is, decreasing RTS indicating that
their output increases by less than the proportional change in all inputs. On the contrary, the CON
and TRA sectors are associated with increasing RTS, implying a more than proportional increase
in outputs with respect to inputs. These estimates summarise the technological advantages or
disadvantages to firms in each industry.

Table 3: Parameter Estimates of the Production Function.

Sector No. of firms βl βk βm RTS
CON 1841 0.695 0.467 -0.040 1.123

(0.010) (0.014) (0.012) (0.021)
FIN 7261 0.481 0.477 0.032 0.990

(0.006) (0.008) (0.010) (0.014)
ICT 1786 0.323 0.630 0.006 0.959

(0.008) (0.008) (0.020) (0.023)
MAN 4211 0.332 0.600 0.020 0.953

(0.004) (0.012) (0.012) (0.014)
TRA 1231 0.439 0.539 0.026 1.005

(0.012) (0.050) (0.016) (0.054)
WAD 3441 0.304 0.692 -0.011 0.985

(0.002) (0.002) (0.002) (0.003)

Table 4 presents the summary statistics for the estimated TFP values for each industry sector.
The mean and median statistics suggest that firms in the WAD sector are associated with the
highest level of unobserved productivity, closely followed by firms in the MAN and ICT sectors.
The sectors FIN, TRA, and CON show lower levels of unobserved productivity.

Table 4: Summary of estimated TFP values.

Statistic CON FIN ICT MAN TRA WAD
Min -2.11 -1.29 2.35 -2.09 1.32 5.37
Median 6.93 7.41 8.02 8.07 7.26 8.80
Mean 6.94 7.45 8.04 8.10 7.19 8.90
Max 10.38 14.19 13.18 12.89 12.48 13.48
Std. dev. 0.90 1.09 1.084 0.74 1.11 0.92

Results from Bayesian NPIV Estimation

Figure 3 presents the estimates of S(.) (see equation 6, second-stage) for the six industry sec-
tors. The plots include the mean estimates and the 95 percent credible bands (shown by the
dotted line). The density of tick marks along the X-axis represents the number of observations
in the corresponding domain of agglomeration. The figure indicates the presence of significant
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non-linearities in the agglomeration-productivity relationship. This observation validates our hy-
pothesis that presuming a log-log functional form may yield biased estimates of this relationship
and associated agglomeration elasticities.
In Figure 4, we plot the agglomeration elasticities obtained at different levels of agglomeration
and their corresponding credible bands. Note that these estimates are obtained using the 3,500
posterior draws (refer to Section 2) that are available at multiple points along the support of the
model covariate, that is, MED. To obtain the elasticity at any point ρ, we identify a small interval
[ρ1, ρ2] surrounding ρ, where ρ1 = ρ−∆ρ and ρ2 = ρ+∆ρ. We extract the 3,500 posterior draws
at the two points ρ1 and ρ2 and calculate the change in elasticity for each draw. The mean of
the resulting 3,500 samples gives the reported elasticity estimate at ρ and the quantiles 0.025 and
0.975 give the corresponding lower and upper limits of the 95-percent credible bands.
For the CON sector, we note that agglomeration elasticities remain positive for MED levels be-
low 8000, with values increasing from 0.15 to 0.72 and back to 0.48, and become statistically
insignificant beyond that. For the MAN sector, we observe that the agglomeration elasticities are
statistically significant between MED levels of 8000 to 1000 and 13000 to 18000, and statistically
insignificant otherwise. The estimated elasticities increase from 0.19 to 0.78 until a MED level of
16000 and drop back to 0.17 before becoming statistically insignificant. Our estimates for the WAD
sector suggest that the agglomeration elasticities fall from a value of 0.16 at MED level 2000 to a
value of -0.20 at MED level 8000, while remaining positive (and statistically significant) between
MED levels of 2000 to 5000, become negative (and statistically significant) between MED levels of
7000 to 10000. The agglomeration elasticities become positive (and statistically significant) again
at a MED level of 11000, followed by a steep increase to the value of 0.75 at a MED level of
13000. The agglomeration elasticities, thereafter, fall to a value of 0.22 at a MED level of 15000,
beyond which they become statistically insignificant. The estimated agglomeration elasticities for
the TRA sector remain positive and statistically significant between MED levels of 6000 to 12000,
and range between 0 to 0.50, the maximum being achieved at a MED level of 9000. Higher levels
of agglomeration of the order of 18000 to 20000 MED are associated with negative (and statis-
tically significant) values of agglomeration elasticities ranging between -0.75 to -0.50. Firms in
the ICT sector are found to be associated with positive agglomeration elasticities in the interval
[0.12,0.22] at agglomeration levels between 7000 to 15000 MED, the maximum being observed at
a MED level of 13000. The agglomeration elasticities remain statistically insignificant otherwise.
Finally, for the FIN sector, we first observe negative and statistically significant agglomeration
elasticities between MED levels of 3000 to 5000. The estimated elasticities are of the order of -0.1.
Nonetheless, the elasticities remain positive (and statistically significant) at MED levels between
7000 to 9000, 11000 to 1500, and also beyond MED levels of 18000. The positive values range in
the interval [0.18,0.60], with the maximum occurring at a level of 13000 MED. Overall, Figure 4
indicates that barring the CON sector, the productivity benefits in all sectors comment into effect
beyond a critical mass of agglomeration. This critical mass varies across industries.
Table 5 summarises the estimated agglomeration elasticities. The final column in the table reports
the estimates from a one-step procedure where MED enters as a covariate in the production function
(equation 3). The values in the final column are fairly consistent with the literature in which
elasticity estimates have been derived by assuming the productivity-agglomeration relationship to
be log-log (see Graham & Gibbons (2019) for a summary of 47 international empirical studies on the
effects of agglomeration on productivity). Our results suggest that our non-linear agglomeration
elasticity estimates take more extreme values compared to their log-log counterparts.
Next, we map the estimated agglomeration elasticities to the different zones (that is, MSOA11
units) in England using their MED values. This mapping allows us to understand the spatial
distribution of the agglomeration impacts in England. Figure 5 shows these distributions for each
industry sector. Note that we adopt the same colour key for each map in Figure 5 to allow
comparison of agglomeration impacts across industries.
From Figure 5a, we note that the highest levels of agglomeration benefits (elasticities ranging in the
interval [0.4,0.9]) in the CON sector can be observed in the peripheral regions of the Greater London
Area (GLA) (for instance, Slough, Watford, and Loughton) and within cities of Manchester and
Birmingham. Interestingly, the areas within the GLA are associated with statistically insignificant
productivity effects of agglomeration. All other MSOA11 units are associated with agglomeration
elasticities ranging between 0.1 and 0.3. Figure 5b suggests that the significant agglomeration
benefits in the MAN sector remain confined within the GLA, while remaining the highest in the
regions immediately surrounding the CBD of London (which includes the City of London, City
of Westminster and Kensington and Chelsea, among others). Figure 5c indicates the firms in the
WAD sector avail the highest benefits of agglomeration on their productivity by locating in the
outskirts of the CBD of London. The impacts within the CBD of London and cities such as
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(a) Construction (b) Manufacturing
(c) Wholesale and Distribu-
tion

(d) Transport
(e) Information and Commu-
nication (f) Finance

Figure 3: Estimated relationships between agglomeration and firm productivity.

(a) Construction (b) Manufacturing
(c) Wholesale and Distribu-
tion

(d) Transport
(e) Information and Commu-
nication (f) Finance

Figure 4: Estimated agglomeration elasticities.
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Table 5: Summary of estimated agglomeration elasticities.

Sectors Mean Effective Density (MED) One-step
2000 4000 6000 8000 10000 12000 14000 16000 18000 estimate

CON 0.15 0.24 0.72 0.48 0 -0.1 -1.05 -0.17 0.32 0.045
(0.04) (0.07) (0.09) (0.09) (0.48) (0.69) (0.68) (0.68) (0.57) (0.009)

MAN -0.05 -0.03 0.03 0.19 0.45 0.56 0.73 0.78 0.17 -0.002
(0.02) (0.06) (0.15) (0.16) (0.21) (0.32) (0.22) (0.2) (0.3) (0.005)

WAD 0.16 0.08 -0.02 -0.2 -0.14 0.52 0.51 0.15 0.03 -0.067
(0.02) (0.04) (0.08) (0.1) (0.08) (0.08) (0.09) (0.1) (0.19) (0.002)

TRA -0.02 0.06 0.21 0.49 0.47 0.28 0.06 -0.3 -0.7 0.115
(0.02) (0.05) (0.17) (0.28) (0.23) (0.12) (0.15) (0.23) (0.3) (0.015)

ICT -0.03 -0.02 0.05 0.18 0.15 0.18 0.19 0.02 -0.03 0.072
(0.03) (0.04) (0.06) (0.07) (0.07) (0.08) (0.07) (0.13) (0.15) (0.009)

FIN -0.05 -0.1 0.04 0.17 0.05 0.5 0.4 0.03 0.3 0.144
(0.03) (0.03) (0.08) (0.08) (0.05) (0.15) (0.13) (0.13) (0.16) (0.003)

(a) Construction (b) Manufacturing
(c) Wholesale and Distribu-
tion

(d) Transport
(e) Information and Commu-
nication (f) Finance

Figure 5: Spatial distribution of the agglomeration impacts in England in 2019.

Birmingham and Manchester either remain negative or statistically insignificant. Other regions
show positive impacts of varying degrees as represented by the color key. Similar to the MAN
sector, firms in TRA and ICT sectors (Figures 5d and 5e) observe agglomeration benefits in zones
surrounding the CBD of London. From Figure 5f, we note that firms in the FIN sector derive the
highest agglomeration benefit by locating within the CBD of London. Additionally, while most
areas within the GLA observe positive productivity impacts of agglomeration, the peripheral areas
of the GLA, Birmingham, and Manchester are associated with diseconomies of agglomeration. The
effect in other areas remains statistically insignificant.
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4 Conclusions

Transport accounted for 5 to 8 percent of the total public expenditure on services in the UK
through the years 2017 to 20225. In a typical year, the United Kingdom spends about £45 billion
pounds on construction and maintenance of transport infrastructure. Understanding the economic
and social benefits arising from investments of this order is thus important for policymakers.
This paper contributes to the growing strand in the urban economic literature that focuses on
measuring the Wider economic impacts (WEIs) of transport investments arising via scale economies
of agglomeration.
We make two advances in this agenda. First, we develop a causal statistical framework to quan-
tify the non-linearities in the relationship between agglomeration (represented by Mean Effective
Density (MED)) and productivity (measured as Total Factor Productivity (TFP)). The estimated
relationships, for the first time, provide a quantification of how agglomeration elasticities vary over
different levels of agglomeration. Second, we determine a novel external instrument derived from
traffic casualty data to identify the agglomeration-productivity relationship. Our study suggests
the use of the severity of traffic casualties among active mode users and motorcyclists during peak
hours as a relevant and exogenous instrument for agglomeration.
Our investigation of agglomeration elasticities in six key industry sectors in England suggests that
agglomeration elasticities vary significantly vary over agglomeration levels. For the Construction
Sector, we observe positive agglomeration elasticities only at low and mid levels of agglomeration.
For the other five sectors which include, Manufacturing, Wholesale and Distribution, Transport,
Information and Communication Technology, and Finance, we note the presence of a critical mass of
agglomeration beyond which the positive benefits of agglomeration on productivity can be observed.
Below this critical level, the agglomeration elasticities either remain negative (but statistically
significant) or statistically insignificant at the 95-percent confidence level. Additionally, we note
that agglomeration elasticities in the Transport sector become negative at extremely high levels
of agglomeration, while very low levels of agglomeration show positive agglomeration elasticities
for the Wholesale and Distribution sector, but of lower magnitude. Interestingly, the estimated
agglomeration elasticities in this study take more extreme values than ones derived from a log-log
model of productivity and agglomeration as adopted in the literature. Our estimates thus have
crucial implications for the appraisal of transport investments.
Further, our exploration of the spatial distribution of the agglomeration impacts in England reveals
that the highest levels of agglomeration benefits in the Construction sector are observed in the
regions surrounding the Greater London Area (GLA) and within Manchester and Birmingham. For
the Manufacturing, Wholesale and Distribution, Transport and Information and Communication
Technology sectors, the largest productivity benefits of agglomeration are confined within the GLA,
particularly along the fringes of its central business district (CBD). For the Finance Sector, the
highest positive agglomeration elasticities are associated with the regions in the CBD of the GLA,
while the outskirts of the GLA, Manchester and Birmingham see diseconomies of agglomeration.
Our findings are unsurprising: these spatial patterns are consistent with the sector-wise preferences
for office locations by firms. Refining this investigation with more data, particularly from other
years or from other countries, is an important topic for further research and can provide an empirical
basis for targetting transport investments in a manner that can spread productivity benefits more
evenly.

Acronyms

2SLS two-staged least square

ATEM access to economic mass

CBA Cost Benefit Analysis

CBD central business district

CF control function

CON Construction

DP Dirichlet process

DPM Dirichlet process mixture
5https://www.gov.uk/government/statistics/public-expenditure-statistical-analyses-2022
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DUBs Direct user benefits

FAME Financial Analysis Made Easy

FIN Finance

GLA Greater London Area

ICT Information and Communication Technology

IV instrumental variable

IVs instrumental variables

MAN Manufacturing

MCMC Markov chain Monte Carlo

MED Mean Effective Density

MSOA11 Middle Layer 2011 Census Super Output Areas

NP non-parametric

NPIV non-parametric instrumental variables

ONS Office for National Statistics

RTS returns to scale

SIC07 Standard Industrial Classification 2007

TAG Transport Analysis Guidance

TFP Total Factor Productivity

TRA Transport

WAD Wholesale and Distribution

WEIs Wider economic impacts
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