
Optimal bicycle network expansions with endogenous demand

Mads Paulsen*1 and Jeppe Rich2

1Postdoc, Department of Technology, Management and Economics, Technical University of
Denmark, Denmark

2Professor, Department of Technology, Management and Economics, Technical University of
Denmark, Denmark

Short summary

The challenge of identifying the ideal spatial and temporal prioritization for long-term expansions
of bicycle networks is a complex undertaking. Our objective in this research is to determine the
most beneficial expansions of bicycle networks for society, while considering the impact of level-of-
service effects and induced demand throughout the evaluation period. While the effects of constant
demand can be approximated through a sequence of linear binary mathematical programs (Paulsen
& Rich, 2023), accommodating induced demand necessitates a different optimization approach that
accounts for the likelihood of various segments being integrated in the infrastructure in future years
during the optimization process. We put this approach to the test by applying it to the Greater
Copenhagen Cycle Superhighway network. It is demonstrated that the optimized infrastructure
render benefit-cost ratios exceeding 10, and that accounting for demand effects, significantly in-
creases the societal return and changes the geographical structure of optimal investments.

Keywords: Bicycle network design; Bicycle traffic; Induced demand; Socioeconomic assessment;
Dynamic optimization

1 Introduction

There is considerable evidence that bicycle demand is impacted by the presence of bicycle infras-
tructure, as demonstrated in several studies including van Goeverden et al. (2015) and Rich et al.
(2021). The implementation of bicycle infrastructure not only affects travel time benefits resulting
from route choice substitution as demonstrated in Paulsen & Rich (2023), but also the number of
bicycle trips in the network (Hallberg et al., 2021). This is a result of mode substitution effects and
potentially induced traffic. The societal value of increasing bicycle mileage is evidenced in Breda
et al. (2018) and Martin et al. (2006), who study the external health benefit of one kilometer of
cycling. The cost-benefit performance of bicycle infrastructure is studied in Rich et al. (2021), who
finds that bicycle infrastructure is highly beneficial.

Optimal design of bicycle networks has been studied within operation research since early work by
Smith & Haghani (2012) and Mesbah et al. (2012). The objective functions and constraints vary
largely across studies, from approaches who i) minimize investment cost constrained by a minimum
level-of service (Duthie & Unnikrishnan, 2014), ii) minimize local detours (Lim et al., 2021), iii)
maximize cyclists on links where the stress-level is low (Chan et al., 2022; Ospina et al., 2022), iv)
minimize generalized costs (Mauttone et al., 2017; Liu et al., 2019), or v) consider multi-objective
costs (Lin & Yu, 2013; Lin & Liao, 2016; Liaw & Lin, 2022) subject to budget constraints. Although
the studies have considered a large variety of performance measures, none of the studies calculate
societal cost-benefit performance of the resulting bicycle network investment plans. Furthermore,
many of these studies embed the route choice of cyclists directly in the optimization model, which
becomes computationally intractable when considering large-scale applications with very large
networks and many origin-destination pairs.

A recent study (Paulsen & Rich, 2023) shows that the consumer surplus of existing users can be
approximated closely through sequences of linear binary mathematical programs at the level of the
links. The approach is based on a method where OD-benefits are assigned to the network. The
study show – under the assumption of constant demand – how optimal infrastructure expansions
can be derived from a series of binary linear programs. However, as the study assumes the demand
to be exogenous, it is not able to include health benefits that arise from increased bicycle demand.
As demonstrated in previous research (Breda et al., 2018; Rich et al., 2021), this is the single
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most important factor when calculating the societal net present value of large bicycle network
expansions.

This study extends Paulsen & Rich (2023), and the literature by and large, by determining the
societal optimal expansions with endogenous demand. Methodologically, the approach is based
on a dynamic optimization framework, within which the expected level-of-service and induced
demand are approximated forward in time, to then approximate the expected accumulated benefit
of selecting a given segment at a given time. By applying the algorithm to the entire evaluation
period, we identify a bicycle infrastructure plan that render a solution worth 16 billion DKK in net
present value terms. This correspond to a solution that is 81%–417% better than the considered
reference strategies and with a benefit-cost ratio exceeding 10.

2 Methodology

Approximation of net present value

The overall aim is to provide a reasonable and computationally feasible approximation to the net
present value at time t of any given existing network configuration ut−1 and investment action
∆ut. Here, ut−1 is a binary vector, which has value 1 for link segments that were constructed
at or before t − 1, and ∆ut being a binary vector, which is 1 for the segments being constructed
exactly at time t. Link segments are natural bundles of links (chunks of routes) along the same
corridor, see Figure 3 for an example.

In Paulsen & Rich (2023) it is shown that the travel time function Xω can be approximated very
accurately for any configuration of ut−1 by assigning the OD-level travel time savings back onto
the network, and by taking into account the travel time savings. That is,

Xω(u
t−1) ≃ x0

ω − (∆xω)
⊺
ut−1, (1)

ω ∈ Ω represents combinations of OD and traveler type, and x0
ω is the baseline travel time for

ω without any network upgrades. ∆xω =
[
∆x1,ω ∆x2,ω · · · ∆x|B|,ω

]⊺ is the approximated
vector of linear travel reductions from Paulsen & Rich (2023),

∆xb,ω =

∑
l∈b

Ll∑
l∈qLω∩L

Ll

∑
l∈q0ω

τl,ω −
∑
l∈qLω

τ̂l,ω

 , b ∈ B, ω ∈ Ω. (2)

Here, Ll is the length of link l, τl,ω is the non-upgraded travel time on link l for the traveler
type associated with ω, and τ̂l,ω is the corresponding upgraded travel time. qomega,0 and qomega,0

denotes the shortest paths for OD and traveler type ω in the non-upgraded network and the fully
upgraded network, respectively.

Equality is guaranteed in Eq. (1) at the two extrema ut−1 = 0 and ut−1 = 1. For this study,
analogously, we introduce the approximated vector of linear travel distance extension ∆λω =[
∆λ1,ω ∆λ2,ω · · · ∆λ|B|,ω

]⊺, which allows approximating the traveled distance for each ω,

Λω(u
t−1) ≃ λ0

ω + (∆λω)
⊺
ut−1. (3)

Again with guarantee for equality for ut−1 ∈ {0,1}. Here ∆λω has elements,

∆λb,ω =

∑
l∈b

Ll∑
l∈qLω∩L

Ll

∑
l∈qLω

Ll −
∑
l∈q0ω

Ll

 , b ∈ B, ω ∈ Ω. (4)

Finally, the demand function Dω does not require searching through the network, why it can be
evaluated sufficiently quickly to be used as it is. In the study we use a simple logit-based mode
choice model based on parameters from Hallberg et al. (2021). More advanced models can easily be
considered within the framework we propose, for instance models that include destination choice
or forecasts demand according the development in GDP.

All in all, this suggest that the net present value can be approximated reasonably and computa-
tionally efficient by NPVt(∆ut;ut−1) in the equation below,
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NPVt(∆ut;ut−1) =

Consumer surplus︷ ︸︸ ︷
κt

∑
ω∈Ω

ζω
Dω(u

t−1) + d0ω
2

(
x0
ω −Xω(u

t−1)
)
+

Health benefits︷ ︸︸ ︷
κt

∑
ω∈Ω

ξω
(
Dω(u

t−1)Λω(u
t−1)− d0ωλ

0
ω

)
+

Scrap value︷ ︸︸ ︷
κ|T |

∑
b∈B

cb∆ut
b−

Construction costs︷ ︸︸ ︷
κt

∑
b∈B

cb∆ut
b −

Maintenance costs︷ ︸︸ ︷
κt

∑
b∈B

mbu
t−1
b . (5)

The used notation is summarized in Table 1.

b ∈ B A link segment b (containing links l ∈ b along the same corridor), within the set
of all link segments B. B partitions L, such that the each link of L belongs to
exactly one link segment b ∈ B.

cb Construction cost of segment b. From Incentive (2018).
d0ω Baseline demand for ω, i.e. Dω(X(0)).
Dω Demand function for ω. Parameters adopted from Hallberg et al. (2021).
ζω Value of time for the traveler type of ω. Value of 91 DKK per hour (Technical

University of Denmark, 2022).
κt Discounting factor for time t. From Technical University of Denmark (2022).
λ0
ω Baseline travel distance of ω, i.e. Λω(0).

Λω Travel distance function for ω.
mb Annual maintenance cost of segment b. From Incentive (2018).
∆ut The decision variable vector at time t, [∆ut

1 ∆ut
2 . . . ∆ut

|B|]
⊺, which is 1 for

segments being chosen at time t, and 0 otherwise.
ut−1 The vector [ut−1

1 ut−1
2 . . . ut−1

|B| ]
⊺ containing ones for all segments that have

been selected at time t − 1 or before, and zeroes elsewhere. That is, ut−1 =∑
k≤t−1 ∆uk.

x0
ω Baseline travel time for ω, i.e. Xω(0)

Xω Travel time function for ω. From Hallberg et al. (2021).
ξω Health benefit factor per km for ω (subtracted the corresponding accident factor).

Value of 7.11 DKK per km (Technical University of Denmark, 2022).
ω ∈ Ω Considered OD-pair and traveler type combinations. From Hallberg et al. (2021).

Table 1: Notation overview for the net present value calculation (Eq. (5))

Optimization framework

The idea is then to embed this expression into an optimization scheme that optimizes ∆ut for all
t in the 50 year evaluation period T , as stated in Problem 1.
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Figure 1: Flow chart of the proposed optimization scheme. ∆ut
′ are the optimal strategies at each time step, whereas pt′ represents the expected

infrastructure composition at future time steps. The binary mathematical program (Binary MP) is Problem 2. E
[
pt′ |E

[
Demand(pt′), LoS(pt′)

]]
=

E
[
pt′ |E

[
D(pt′), X(pt′)

]]
forms a fixed point problem across all future t′ > k, which leads to the vector St. The calculation of St is further detailed in

Figure 2, and constitutes the coefficients for the linear objective function of Binary MP used to determine ∆ut
′ .
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max
∆ut

Z =
∑
t∈T

NPVt(∆ut,ut−1) s.t. (P1a)

Bt ≥
∑

k∈T :k≤t

κk
(
c⊺∆uk +m⊺uk−1

)
, ∀t ∈ T (P1b)

utb ≥ ut−1
b , ∀b ∈ B, ∀t ∈ T (P1c)

∆utb ∈ {0, 1}, ∀b ∈ B, ∀t ∈ T (P1d)

Problem 1: NPV-model with flexible demand

Here, Bt is the cumulative budget for time t, whereas c and m are construction costs and main-
tenance costs vectors defined by c = [c1 c2 · · · cB]

⊺ and m = [m1 m2 · · · mB]
⊺, respec-

tively. A sketch of the overall idea is outlined in Figure 1.

So far, the approach is more or less similar to that of Paulsen & Rich (2023). That is, given
previous decisions ut−1, we determine the optimal composition of the segments to select at time t
(∆ut) subject to budget constraints, such that the expected future net present value is maximized.
Once the optimal ∆ut has been found, ut can be updated to ut ← ut+∆ut−1, and we can consider
the next choice situation at time t← t+1. The basic idea is that at any given decision time t, we
can assume that we already know what has happened in the past, i.e. ∆ut′ ,∀t′ < t.

However, the optimization problem is complicated by the presence of endogenous demand. A very
precise approximation could be made concerning future net present values without taking into
account the expectations of future investment in Paulsen & Rich (2023) under the assumption
of constant demand. In that case, the effect of each segment could be linearized, fully ignoring
their interaction without any notable loss in net present value precision. This would clearly be
inappropriate when taking endogenous demand into account.

Thus, instead we develop a vector St that also takes the expectations of future investments pt′ into
account for t′ > t. It gives an approximation of how each, so far un-selected segment, contributes
to the expected accumulated net present value. We use this as the coefficients for our objective
function in Problem 2.

max
∆ut

Z =
(
St

)⊺
∆ut s.t. (P2a)

Bt ≥
∑

k∈T :k≤t

κk
(
c⊺∆uk +m⊺uk−1

)
, ∀t ∈ T (P2b)

utb ≥ ut−1
b , ∀b ∈ B, ∀t ∈ T (P2c)

∆utb ∈ {0, 1}, ∀b ∈ B, ∀t ∈ T (P2d)

Problem 2: The individual binary linear problems

Calculation of St

The calculation St is a tedious and complex task not particularly suited for being explained in
detail in an extended abstract. Still, we aim at outlining the key aspects in this section. A flow
chart of the process of calculating St for a single t ∈ T is found in Figure 2.

The calculation of St considers future time stages t′ ∈ T : t′ > t, in which we do not yet know which
segments will be chosen. We accommodate this by loosening the restriction of binary decisions, and
instead introduce a cumulative probability vector pt′ for future t′ > t for all segments that remain
unchosen at time t, denoted by Bt = {b ∈ B : ut−1

b = 0}. Likewise, we introduce the instantaneous
probability vector ∆pt′ = pt′ − pt′−1. Initially, we do not differentiate between the probability of
various segments, i.e. assign uniform probabilities pt

′

1 = pt
′

2 . . . = pt
′

|B|,∀t
′ > t across segments, but

we will later set up a fixed point problem where the probabilities feed into an expected future net
present value for each b ∈ Bt, and the future net present values affect the probabilities.
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Figure 2: Flow chart of the process of calculating St for a single t ∈ T . The calculation
contains two fixed point problems. One for determining νt

′,b′ for every future time steps
t′ > t for every unselected segment b ∈ Bt with intermediate solutions indexed by j ∈ N+,
and an overall fixed point problem for St with solutions indexed by k ∈ N+.

At time t we aim at evaluating the approximate effect of choosing each of the unselected segments
b ∈ Bt, and compare it to a situation where no action is taken. The difference between the two
(Eq. (6)),

St
b{k+1} =


∑
t′≥t

NPVt′

(
∆pt′,b,t

{k} ,pt′−1,b,t
{k}

)
−

∑
t′≥t

NPVt′

(
∆pt′,0,t

{k} ,pt′−1,0,t
{k}

)
, b ∈ Bt

0, otherwise
, (6)

is calculated using Eq. (5) using continuous rather than binary vectors as input, and reflects an
approximation of the added value of choosing segment b at time t.

However, in order to calculate St
b{k+1} we need the probability vectors pt′,b,t

{k} . As we will see shortly,
these are mutually dependent and form a fixed point problem which is solved iteratively across an
iteration counter k. An exception to this is for t′ = t, for which we have the evaluated action at
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time t, that is

pt,b,ti =

{
1, i = b

ut−1
i otherwise

,∀b ∈ Bt. (7)

Before we can determine the actual probability vector for t′ > t, it turns out to be relevant to
determine the expected number of segments chosen in a given future timestep t′ > t. We denote
this number by νt

′
. As it (also) forms a fixed point problem with the probability vector in all

future time stages, we index it by j. For a given t′ ≥ t and possibly an intermediate probability
vector pν{j},b,t

{j} , νt
′

{j} can be determined by dividing the (expected) remaining budget Rt′ at time t′

with the probability weighted average construction costs of the remaining segments c̄t
′,b,t
{j} ,

νt
′

{j+1} =
Rt′

c̄t
′,b,t
{j}

=



Bt−
∑

k∈T :k<t

κkc⊺∆uk−
∑

k∈T :k≤t

κkm⊺uk−1

κt′ 1

|Bt,b|

∑
b′∈B

cb′
, j + 1 = 0

Bt−
∑

k∈T :k<t

κkc⊺∆uk−
∑

k∈T :k≤t

κkm⊺uk−1

κt′ ∑
b′∈Bt,b

∆p
νt′
{j}

b′{j}
c
b′

∑
b′∈Bt,b

∆p
νt′
{j}

b′{j}

, j + 1 ∈ N+ . (8)

The probability vector does not only depend on the expected number of selected segments, but also
on baseline probabilities wt which takes into account the expected performance of each segment.
As St measures exactly this, it seems reasonable to include St in the determination of the baseline
probabilities. Furthermore, since the investments at each time step are limited by the construction
costs of the segments, we also adjust the probabilities according to the construction costs, so
that expected net present value increase per construction costs is used in the denominator. The
suggestion that this is a good performance indicator is supported by Paulsen & Rich (2023) in
which a greedy algorithm based on this ratio yields practically identical results as the optimal
solution. This, leads to the following baseline probability expression wt

{k} for Iteration k based on
a based on a Multinomial Logit (McFadden, 1973) formulation:

wt
b{k} =


1

|Bt| , k = 0

exp

(
µ

Mt

St
b{k}
κtcb

)
∑

i∈Bt
exp

(
µ

Mt

St
i{k}
κtci

) , k ∈ N+
,∀b ∈ Bt

′
,∀t ∈ T . (9)

Here M t is the range between the best and worst segment in Iteration 1, i.e.

M t = max
b∈Bt

St
b{1} − min

b∈Bt
St
b{1}, (10)

and µ is a hyperparameter.

When evaluating the effect of choosing segment b at time t, the baseline probabilities have to be
altered accordingly, such that they still sum to 1 when not taking b into account, i.e.

wt,b
b′ {k} =


wt

b′ {k}
1−wt

b{k}
, b′ ∈ Bt,b

0, otherwise
, t ∈ T . (11)

Assume now that ν ∈ N+ segments are to be selected among Bt. As selected segments cannot be
unselected, it follows that the segment probability is a monotonously non-decreasing function of
ν. Based on the baseline probabilities wt and ν, we propose the following recursive definition of
the probability of being selected within the first ν segments (excluding b),
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qν,b,tb′ =


wt,b

b′{k}(1−Qν−1,b,t

b′ )∑
i∈Bt,b

wt,b
i{k}(1−Qν−1,b,t

i )
, ν ≤

∣∣Bt,b∣∣
1, otherwise

, ν ∈ N+,∀b′ ∈ Bt,b,∀b ∈ Bt,∀t ∈ T , (12)

with

Qν,b,t
b′ =

0, ν = 0

min

{
1,

ν∑
n=1

qn,b,tb′

}
, ν ∈ N+ , ∀b′ ∈ Bt,b,∀b ∈ Bt,∀t ∈ T . (13)

This is the regular probability expression, but corrected by the cumulative probability of being
selected within the first ν segments. It can be generalized for non-integer ν’s as follows:

p
ν{j},b,t

b′{j+1} =

{
Q
⌊ν{j}⌋,b,t
b′ +Q

⌊ν{j}⌋+1,b,t

b′ ·
(
ν{j} −

⌊
ν{j}

⌋)
, b′ ∈ Bt,b

1, otherwise
, ν ∈ R+,∀b ∈ Bt,∀t ∈ T .

(14)

Since νt
′,b,t

{j} and pν{j−1},b,t
′

{j} are mutually dependent, the determination of the two forms a fixed
point problem across j. Empirically, since the calculations are very fast, the problem converges
quickly. Once the fixed point problem has been solved, i.e. when

∣∣∣∣∣∣νt′,b,t{j} − νt
′,b,t

{j−1}

∣∣∣∣∣∣
∞

< ϵν , the

resulting νt
′

{j} is denoted by νt
′,b,t and we assign pt′,b,t

{k} ← pνt′,b,t,b,t.

By doing this for all t′ > t, the vector St
{k+1} can be obtained from Eq. (6) for a given k, and

k ← k + 1 can be incremented. The St
{k} is then used to update the baseline probabilities w{k}.

By applying the Method of Successive Averages (Robbins & Monro, 1951; Sheffi, 1985) on the
sequence of St

{k}, the sequence have been found to converge in our application.

When
∣∣∣∣∣∣St

{k} − St
{k−1}

∣∣∣∣∣∣
∞

< ϵS for some k, the optimal strategy at time t can be determined by

assuming linear independence between the elements of St
{k}, and solving Problem 2 using St

{k} as
St.

3 Results and discussion

We test our proposed methodology on a large-scale network of Greater Copenhagen, where we
consider the expansion of 43 proposed cycle superhighway routes divided into 202 segments (see
Figure 3) over a 50 year planning period. Each of the 202 segments has specific construction and
maintenance costs from Incentive (2018), and at each t ∈ {1, 2, . . . , 50} the available budget is
given by Bt = 50 · t mill. DKK. The set of origin-destination pairs and traveler types Ω are taken
from Hallberg et al. (2021) and contains the combinations of 258 origins and destinations and nine
traveller types (combinations of speed preference and bicycle technology, see Hallberg et al. (2021)
for details), leading to a total of 596,754 entries.

Table 2 summarizes the various costs, benefits and performance measures associated to each of
the seven applied solution strategies. W/ demand effects is our proposed method, whereas
W/o demand effects is the solution where demand effects is not taken into account(Paulsen
& Rich, 2023). The bottom-five strategies are baseline reference strategies that are not based on
optimization.

8



Figure 3: The 202 segments forming the 580km planned future cycle superhighway network
extension for the Greater Copenhagen area (Sekretariatet for Supercykelstier, 2019) as well
as the existing network.
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W/ demand effects 715.8 181.9 1,080.5 2,746.3 14,890.5 16,022.4 10.9
W/o demand effects∗∗ 321.7 60.4 445.9 2,197.6 11,270.0 12,760.4 19.0
Random order 986.7 358.6 1,406.4 1,153.4 6,526.7 5,645.6 3.77
Shorter segments first 997.2 358.6 1,387.8 1,864.1 9,001.1 8,839.6 5.36
Shorter routes first 998.9 358.6 1,386.9 1,570.3 8,166.4 7,709.5 4.80
Longer segments first 983.6 358.6 1,410.4 694.4 5,187.5 3,846.4 2.89
Longer routes first 978.8 358.6 1,414.7 1,235.7 7,997.7 7,198.5 4.54

Table 2: Investment key-performance indicators [mill. DKK]. ∗Benefit-cost ratio is dimen-
sionless. ∗∗ The solution found with the methodology from Paulsen & Rich (2023).
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From the results of the baseline strategies it is clearly shown that the overall project portfolio is
profitable, leading to net present values between 3.8 and 8.8 billion DKK – largely driven by the
health benefits from added bicycle kilometers. The variation in net present value across the baseline
reference strategies are substantial, underlining that the order in which segments are implemented
have a large effect on the socioeconomic performance. It is also seen that taking a mathematical
optimization approach leads to large net present value improvements of at least 3.9 billion DKK
when using the method from Paulsen & Rich (2023) (W/o demand effects) and 7.2 billion DKK
with the approach proposed in this study (W/ demand effects), when compared to the best
baseline reference strategy (Shorter segments first). Thus, the improved methodology leads to
a net present value increase that is 83% higher than that of Paulsen & Rich (2023), underlining
that taking demand effects into account in the optimization is highly important. Based on the
raw net present values of 16.0 billion DKK (W/ demand effects) and 12.8 billion DKK (W/o
demand effects), the relative improvement is 26%.

We note that our optimization routine maximizes an approximation of the net present value, why
it is not surprising that the method from Paulsen & Rich (2023) leads to a higher benefit-cost
ratio. Especially since that method stops when further expansions are no longer deemed profitable
without considering demand effects. When considering these effects, more segments are deemed
profitable, leading to a premature stop of investments for the W/o demand effects strategy.
Only investing in the most profitable segments naturally lead to a high benefit-cost ratio, but fails
to achieve the full potential net present value.

Discussion

We consider the same case study and project portfolio as in Hallberg et al. (2021); Rich et al.
(2021), and Paulsen & Rich (2023). Our demand model shares many similarities with Hallberg et
al. (2021) and Rich et al. (2021) in that we apply similar level-of-service data and model parameters.
However, in the present study we only consider choice of mode and not choice of destination. When
upgrading the entire network, we get a relative increase in the number of trips of 3.7%, which
compares to an increase of 4.5% in Hallberg et al. (2021). The difference is due to not considering
choice of destination. Also, the increase in average cycled trip distance of 8.3% are in line with the
7-8% of Rich et al. (2021). It suggest that our demand sensitivity are largely in line with previous
findings.

In Figure 4 we compare the solution of our proposed method with that of Paulsen & Rich (2023)
that does not incorporate demand effects. Clearly, we see that including such effects encourage
building longer routes further away from the city center and cause more segments to be profitable
from a socioeconomic point-of-view. Hence, the integration of demand effects implies not only a
sizable increase in the welfare contribution, but change the spatial investment pattern as well. The
fact that the investment pattern becomes more spatially scattered have some positive indirect im-
plications for the practical implementation of such strategies. Where the solution without demand
effect is concentrated mostly the in city center, and hence discourages other municipalities from
taking part in the investment scheme, the improved solution actually goes across the geography and
makes it highly relevant for municipalities to collaborate when upgrading the infrastructure.
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(a) Year 4, cumulative budget of 200 mill. DKK (b) Year 12, cumulative budget of 600 mill. DKK

(c) Year 20, cumulative budget of 1,000 mill. DKK (d) Year 28, cumulative budget of 1,400 mill. DKK

Figure 4: Spatial comparison of obtained solutions with (present study) and without
(Paulsen & Rich (2023)) demand effects.
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4 Conclusions

With this study we develop and show the large-scale applicability of a methodology for societally
optimal expansions of bicycle networks where demand is integrated into the problem. The proposed
methodology leads to massive societal benefits with a net present value exceeding 16 billion DKK,
in the range of 81%–417% higher than the baseline reference strategies, and 26% higher than
the solution found without taking demand effects into account as presented in Paulsen & Rich
(2023).

Despite providing a significant contribution to the literature, several research avenues remain open
for future research. Methodologically, it is relevant to investigate alternative ways of calculating
the expected future net present value contribution of segments (St) and compare the performance
of the different variations. It will also be relevant to test the effect of a less sensitive demand
response, and to incorporate more advanced demand models that allow modeling the composition
of regular bicycle users versus electric bicycle users dynamically as network changes occur. As
demand effects are even more pronounced for electric bicycle users that travel further (Hallberg et
al., 2021), it is of particular interest to investigate if and how such dynamic modeling of the share
of electric bicycle users would alter the optimal infrastructure plans. Future research also includes
looking further into regional distribution effects, how to integrate regional budget constraints, and,
not least, how these would affect the solution and socio-economic performance measures.
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