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Short summary

The challenge of identifying the ideal spatial and temporal prioritization for long-term expansions
of bicycle networks is a complex undertaking. Our objective in this research is to determine the
most beneficial expansions of bicycle networks for society, while considering the impact of level-of-
service effects and induced demand throughout the evaluation period. While the effects of constant
demand can be approximated through a sequence of linear binary mathematical programs (Paulsen
& Rich, 2023), accommodating induced demand necessitates a different optimization approach that
accounts for the likelihood of various segments being integrated in the infrastructure in future years
during the optimization process. We put this approach to the test by applying it to the Greater
Copenhagen Cycle Superhighway network. It is demonstrated that the optimized infrastructure
render benefit-cost ratios exceeding 10, and that accounting for demand effects, significantly in-
creases the societal return and changes the geographical structure of optimal investments.

Keywords: Bicycle network design; Bicycle traffic; Induced demand; Socioeconomic assessment;
Dynamic optimization

1 Introduction

There is considerable evidence that bicycle demand is impacted by the presence of bicycle infras-
tructure, as demonstrated in several studies including van Goeverden et al. (2015) and Rich et al.
(2021). The implementation of bicycle infrastructure not only affects travel time benefits resulting
from route choice substitution as demonstrated in Paulsen & Rich (2023), but also the number of
bicycle trips in the network (Hallberg et al., 2021). This is a result of mode substitution effects and
potentially induced traffic. The societal value of increasing bicycle mileage is evidenced in Breda
et al. (2018) and Martin et al. (2006), who study the external health benefit of one kilometer of
cycling. The cost-benefit performance of bicycle infrastructure is studied in Rich et al. (2021), who
finds that bicycle infrastructure is highly beneficial.

Optimal design of bicycle networks has been studied within operation research since early work by
Smith & Haghani (2012) and Mesbah et al. (2012). The objective functions and constraints vary
largely across studies, from approaches who i) minimize investment cost constrained by a minimum
level-of service (Duthie & Unnikrishnan, 2014), ii) minimize local detours (Lim et al., 2021), iii)
maximize cyclists on links where the stress-level is low (Chan et al., 2022; Ospina et al., 2022), iv)
minimize generalized costs (Mauttone et al., 2017; Liu et al., 2019), or v) consider multi-objective
costs (Lin & Yu, 2013; Lin & Liao, 2016; Liaw & Lin, 2022) subject to budget constraints. Although
the studies have considered a large variety of performance measures, none of the studies calculate
societal cost-benefit performance of the resulting bicycle network investment plans. Furthermore,
many of these studies embed the route choice of cyclists directly in the optimization model, which
becomes computationally intractable when considering large-scale applications with very large
networks and many origin-destination pairs.

A recent study (Paulsen & Rich, 2023) shows that the consumer surplus of existing users can be
approximated closely through sequences of linear binary mathematical programs at the level of the
links. The approach is based on a method where OD-benefits are assigned to the network. The
study show – under the assumption of constant demand – how optimal infrastructure expansions
can be derived from a series of binary linear programs. However, as the study assumes the demand
to be exogenous, it is not able to include health benefits that arise from increased bicycle demand.
As demonstrated in previous research (Breda et al., 2018; Rich et al., 2021), this is the single
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most important factor when calculating the societal net present value of large bicycle network
expansions.

This study extends Paulsen & Rich (2023), and the literature by and large, by determining the
societal optimal expansions with endogenous demand. Methodologically, the approach is based
on a dynamic optimization framework, within which the expected level-of-service and induced
demand are approximated forward in time, to then approximate the expected accumulated benefit
of selecting a given segment at a given time. By applying the algorithm to the entire evaluation
period, we identify a bicycle infrastructure plan that render a solution worth 16 billion DKK in net
present value terms. This correspond to a solution that is 81%–417% better than the considered
reference strategies and with a benefit-cost ratio exceeding 10.

2 Methodology

Approximation of net present value

The overall aim is to provide a reasonable and computationally feasible approximation to the net
present value at time t of any given existing network configuration ut�1 and investment action
�ut. Here, ut�1 is a binary vector, which has value 1 for link segments that were constructed
at or before t � 1, and �ut being a binary vector, which is 1 for the segments being constructed
exactly at time t. Link segments are natural bundles of links (chunks of routes) along the same
corridor, see Figure 3 for an example.

In Paulsen & Rich (2023) it is shown that the travel time function X! can be approximated very
accurately for any configuration of ut�1 by assigning the OD-level travel time savings back onto
the network, and by taking into account the travel time savings. That is,

X!(ut�1) ’ x0
! � (�x!)

|
ut�1; (1)

! 2 
 represents combinations of OD and traveler type, and x0
! is the baseline travel time for

! without any network upgrades. �x! =
�
�x1;! �x2;! � � � �xjBj;!

� | is the approximated
vector of linear travel reductions from Paulsen & Rich (2023),

�xb;! =

P
l2b

LlP
l2qL

! \L
Ll

0@X
l2q0

!

�l;! �
X
l2qL

!

�̂l;!

1A ; b 2 B ; ! 2 
: (2)

Here, Ll is the length of link l, �l;! is the non-upgraded travel time on link l for the traveler
type associated with !, and �̂l;! is the corresponding upgraded travel time. qomega;0 and qomega;0
denotes the shortest paths for OD and traveler type ! in the non-upgraded network and the fully
upgraded network, respectively.

Equality is guaranteed in Eq. (1) at the two extrema ut�1 = 0 and ut�1 = 1. For this study,
analogously, we introduce the approximated vector of linear travel distance extension ��! =�
��1;! ��2;! � � � ��jBj;!

� | , which allows approximating the traveled distance for each !,
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|
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Again with guarantee for equality for ut�1 2 f 0;1g. Here ��! has elements,
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Finally, the demand function D! does not require searching through the network, why it can be
evaluated sufficiently quickly to be used as it is. In the study we use a simple logit-based mode
choice model based on parameters from Hallberg et al. (2021). More advanced models can easily be
considered within the framework we propose, for instance models that include destination choice
or forecasts demand according the development in GDP.

All in all, this suggest that the net present value can be approximated reasonably and computa-
tionally efficient by NPVt(�ut;ut�1) in the equation below,
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NPV t (� u t ; u t � 1) =
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The used notation is summarized in Table 1.

b 2 B A link segment b (containing links l 2 b along the same corridor), within the set
of all link segments B. B partitions L , such that the each link of L belongs to
exactly one link segmentb 2 B.

cb Construction cost of segmentb. From Incentive (2018).

d0
! Baseline demand for! , i.e. D ! (X (0)) .

D ! Demand function for ! . Parameters adopted from Hallberg et al. (2021).

� ! Value of time for the traveler type of ! . Value of 91 DKK per hour (Technical
University of Denmark, 2022).

� t Discounting factor for time t. From Technical University of Denmark (2022).

� 0
! Baseline travel distance of! , i.e. � ! (0).

� ! Travel distance function for ! .

mb Annual maintenance cost of segmentb. From Incentive (2018).

� u t The decision variable vector at time t, [� ut
1 � ut

2 : : : � ut
jBj ]| , which is 1 for

segments being chosen at timet, and 0 otherwise.

u t � 1 The vector [ut � 1
1 ut � 1

2 : : : ut � 1
jBj ]| containing ones for all segments that have

been selected at timet � 1 or before, and zeroes elsewhere. That is,u t � 1 =P
k � t � 1 � uk .

x0
! Baseline travel time for ! , i.e. X ! (0)

X ! Travel time function for ! . From Hallberg et al. (2021).

� ! Health bene�t factor per km for ! (subtracted the corresponding accident factor).
Value of 7.11 DKK per km (Technical University of Denmark, 2022).

! 2 
 Considered OD-pair and traveler type combinations. From Hallberg et al. (2021).

Table 1: Notation overview for the net present value calculation (Eq. (5))

Optimization framework

The idea is then to embed this expression into an optimization scheme that optimizes� u t for all
t in the 50 year evaluation periodT , as stated in Problem 1.
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Figure 1: Flow chart of the proposed optimization scheme. � ut0
are the optimal strategies at each time step, whereaspt0

represents the expected
infrastructure composition at future time steps. The binary mathematical program (Binary MP) is Problem 2. E

h
pt0

jE
h
Demand(pt0

); LoS(pt0
)
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=

E
h
pt0
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h
D(pt0

); X (pt0
)
ii

forms a �xed point problem across all future t0 > k , which leads to the vectorS t . The calculation of S t is further detailed in

Figure 2, and constitutes the coe�cients for the linear objective function of Binary MP used to determine � ut0
.
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max
� u t

Z =
X

t2T

NPV t (� u t ; u t � 1) s:t: (P1a)

B t �
X

k2T :k� t

� k
�

c| � u k + m | u k� 1
�

; 8t 2 T (P1b)

ut
b � ut � 1

b ; 8b 2 B; 8t 2 T (P1c)

� ut
b 2 f 0; 1g; 8b 2 B; 8t 2 T (P1d)

Problem 1: NPV-model with �exible demand

Here, B t is the cumulative budget for time t, whereasc and m are construction costs and main-
tenance costs vectors de�ned byc = [ c1 c2 � � � cB ]| and m = [ m1 m2 � � � mB ]| , respec-
tively. A sketch of the overall idea is outlined in Figure 1.

So far, the approach is more or less similar to that of Paulsen & Rich (2023). That is, given
previous decisionsu t � 1, we determine the optimal composition of the segments to select at timet
(� ut ) subject to budget constraints, such that the expected future net present value is maximized.
Once the optimal � u t has been found,u t can be updated tou t  u t +� u t � 1, and we can consider
the next choice situation at time t  t + 1 . The basic idea is that at any given decision timet, we
can assume that we already know what has happened in the past, i.e.� u t 0

; 8t0 < t .

However, the optimization problem is complicated by the presence of endogenous demand. A very
precise approximation could be made concerning future net present values without taking into
account the expectations of future investment in Paulsen & Rich (2023) under the assumption
of constant demand. In that case, the e�ect of each segment could be linearized, fully ignoring
their interaction without any notable loss in net present value precision. This would clearly be
inappropriate when taking endogenous demand into account.

Thus, instead we develop a vectorSt that also takes the expectations of future investmentspt 0
into

account for t0 > t . It gives an approximation of how each, so far un-selected segment, contributes
to the expected accumulated net present value. We use this as the coe�cients for our objective
function in Problem 2.

max
� u t

Z =
�
S t � | � u t s:t: (P2a)

B t �
X

k2T :k� t

� k
�

c| � u k + m | u k� 1
�

; 8t 2 T (P2b)

ut
b � ut � 1

b ; 8b 2 B; 8t 2 T (P2c)

� ut
b 2 f 0; 1g; 8b 2 B; 8t 2 T (P2d)

Problem 2: The individual binary linear problems

Calculation of St

The calculation S t is a tedious and complex task not particularly suited for being explained in
detail in an extended abstract. Still, we aim at outlining the key aspects in this section. A �ow
chart of the process of calculatingS t for a single t 2 T is found in Figure 2.

The calculation of S t considers future time stagest0 2 T : t0 > t , in which we do not yet know which
segments will be chosen. We accommodate this by loosening the restriction of binary decisions, and
instead introduce a cumulative probability vector pt 0

for future t0 > t for all segments that remain
unchosen at timet, denoted by Bt = f b 2 B : ut � 1

b = 0g. Likewise, we introduce the instantaneous
probability vector � pt 0

= pt 0
� pt 0� 1. Initially, we do not di�erentiate between the probability of

various segments, i.e. assign uniform probabilitiespt 0

1 = pt 0

2 : : : = pt 0

jBj ; 8t0 > t across segments, but
we will later set up a �xed point problem where the probabilities feed into an expected future net
present value for eachb 2 B t , and the future net present values a�ect the probabilities.
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Figure 2: Flow chart of the process of calculatingS t for a single t 2 T . The calculation
contains two �xed point problems. One for determining � t0;b0

for every future time steps
t0 > t for every unselected segmentb 2 B t with intermediate solutions indexed by j 2 N+ ,
and an overall �xed point problem for S t with solutions indexed by k 2 N+ .

At time t we aim at evaluating the approximate e�ect of choosing each of the unselected segments
b 2 B t , and compare it to a situation where no action is taken. The di�erence between the two
(Eq. (6)),

St
bf k+1 g =

8
<

:

P

t 0� t
NPVt 0

�
� pt 0;b;t

f kg ; pt 0� 1;b;t
f kg

�
�

P

t 0� t
NPVt 0

�
� pt 0;0;t

f kg ; pt 0� 1;0;t
f kg

�
; b 2 B t

0; otherwise
; (6)

is calculated using Eq. (5) using continuous rather than binary vectors as input, and re�ects an
approximation of the added value of choosing segmentb at time t.

However, in order to calculateSt
bf k+1 g we need the probability vectorspt 0;b;t

f kg . As we will see shortly,
these are mutually dependent and form a �xed point problem which is solved iteratively across an
iteration counter k. An exception to this is for t0 = t, for which we have the evaluated action at
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time t, that is

pt;b;t
i =

(
1; i = b
ut � 1

i otherwise
; 8b 2 B t : (7)

Before we can determine the actual probability vector for t0 > t , it turns out to be relevant to
determine the expected number of segments chosen in a given future timestept0 > t . We denote
this number by � t 0

. As it (also) forms a �xed point problem with the probability vector in all
future time stages, we index it by j . For a given t0 � t and possibly an intermediate probability
vector p

� f j g ;b;t
f j g , � t 0

f j g can be determined by dividing the (expected) remaining budgetRt 0 at time t0

with the probability weighted average construction costs of the remaining segments�ct 0;b;t
f j g ,

� t 0

f j +1 g =
Rt 0

�ct 0;b;t
f j g

=

8
>>>>>>>><

>>>>>>>>:

B t �
P

k 2T :k<t
� k c | � u k �

P

k 2T :k � t
� k m | u k � 1

� t 0 1
jB t;b j

P

b02B
cb0

; j + 1 = 0

B t �
P

k 2T :k<t
� k c | � u k �

P

k 2T :k � t
� k m | u k � 1

� t 0 P

b02B t;b
� p

� t 0
f j g

b0f j g
c b0

P

b02B t;b
� p

� t 0
f j g

b0f j g

; j + 1 2 N+ : (8)

The probability vector does not only depend on the expected number of selected segments, but also
on baseline probabilitiesw t which takes into account the expected performance of each segment.
As S t measures exactly this, it seems reasonable to includeS t in the determination of the baseline
probabilities. Furthermore, since the investments at each time step are limited by the construction
costs of the segments, we also adjust the probabilities according to the construction costs, so
that expected net present value increase per construction costs is used in the denominator. The
suggestion that this is a good performance indicator is supported by Paulsen & Rich (2023) in
which a greedy algorithm based on this ratio yields practically identical results as the optimal
solution. This, leads to the following baseline probability expressionw t

f kg for Iteration k based on
a based on a Multinomial Logit (McFadden, 1973) formulation:

wt
bf kg =

8
>>><

>>>:

1
jB t j ; k = 0

exp

 
�

M t

S t
b f k g

� t c b

!

P

i 2B t
exp

 
�

M t

S t
i f k g

� t c i

! ; k 2 N+ ; 8b 2 B t 0
; 8t 2 T : (9)

Here M t is the range between the best and worst segment in Iteration1, i.e.

M t = max
b2B t

St
bf 1g � min

b2B t
St

bf 1g; (10)

and � is a hyperparameter.

When evaluating the e�ect of choosing segmentb at time t, the baseline probabilities have to be
altered accordingly, such that they still sum to 1 when not taking b into account, i.e.

wt;b
b0 f kg =

8
<

:

w t
b0f k g

1� w t
b f k g

; b0 2 B t;b

0; otherwise
; t 2 T : (11)

Assume now that � 2 N+ segments are to be selected amongBt . As selected segments cannot be
unselected, it follows that the segment probability is a monotonously non-decreasing function of
� . Based on the baseline probabilitiesw t and � , we propose the following recursive de�nition of
the probability of being selected within the �rst � segments (excludingb),

7



q�;b;t
b0 =

8
><

>:

w t;b
b0f k g (1� Q � � 1 ;b;t

b0 )
P

i 2B t;b
w t;b

i f k g (1� Q � � 1 ;b;t
i ) ; � �

�
�Bt;b

�
�

1; otherwise

; � 2 N+ ; 8b0 2 B t;b ; 8b 2 B t ; 8t 2 T ; (12)

with

Q�;b;t
b0 =

8
<

:

0; � = 0

min
�

1;
�P

n =1
qn;b;t

b0

�
; � 2 N+ ; 8b0 2 B t;b ; 8b 2 B t ; 8t 2 T : (13)

This is the regular probability expression, but corrected by the cumulative probability of being
selected within the �rst � segments. It can be generalized for non-integer� 's as follows:

p
� f j g ;b;t
b0f j +1 g =

(
Q

b� f j g c;b;t
b0 + Q

b� f j g c+1 ;b;t
b0 �

�
� f j g �

�
� f j g

��
; b0 2 B t;b

1; otherwise
; � 2 R+ ; 8b 2 B t ; 8t 2 T :

(14)

Since� t 0;b;t
f j g and p� f j � 1g ;b;t 0

f j g are mutually dependent, the determination of the two forms a �xed
point problem across j . Empirically, since the calculations are very fast, the problem converges
quickly. Once the �xed point problem has been solved, i.e. when

�
�
�
�
�
� � t 0;b;t

f j g � � t 0;b;t
f j � 1g

�
�
�
�
�
�
1

< � � , the

resulting � t 0

f j g is denoted by � t 0;b;t and we assignpt 0;b;t
f kg  p� t 0;b;t ;b;t .

By doing this for all t0 > t , the vector S t
f k+1 g can be obtained from Eq. (6) for a givenk, and

k  k + 1 can be incremented. TheS t
f kg is then used to update the baseline probabilitiesw f kg.

By applying the Method of Successive Averages (Robbins & Monro, 1951; She�, 1985) on the
sequence ofS t

f kg, the sequence have been found to converge in our application.

When
�
�
�
�
�
�S t

f kg � S t
f k � 1g

�
�
�
�
�
�
1

< � S for somek, the optimal strategy at time t can be determined by

assuming linear independence between the elements ofS t
f kg, and solving Problem 2 usingS t

f kg as
S t .

3 Results and discussion

We test our proposed methodology on a large-scale network of Greater Copenhagen, where we
consider the expansion of 43 proposed cycle superhighway routes divided into 202 segments (see
Figure 3) over a 50 year planning period. Each of the 202 segments has speci�c construction and
maintenance costs from Incentive (2018), and at eacht 2 f 1; 2; : : : ; 50g the available budget is
given by B t = 50 � t mill. DKK. The set of origin-destination pairs and traveler types 
 are taken
from Hallberg et al. (2021) and contains the combinations of 258 origins and destinations and nine
traveller types (combinations of speed preference and bicycle technology, see Hallberg et al. (2021)
for details), leading to a total of 596,754 entries.

Table 2 summarizes the various costs, bene�ts and performance measures associated to each of
the seven applied solution strategies. W/ demand e�ects is our proposed method, whereas
W/o demand e�ects is the solution where demand e�ects is not taken into account(Paulsen
& Rich, 2023). The bottom-�ve strategies are baseline reference strategies that are not based on
optimization.
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Figure 3: The 202 segments forming the 580km planned future cycle superhighway network
extension for the Greater Copenhagen area (Sekretariatet for Supercykelstier, 2019) as well
as the existing network.

Strategy C
on

st
ru

ct
io

n
co

st
s

S
cr

ap
va

lu
e

M
ai

nt
en

an
ce

co
st

s

C
on

su
m

er
su

rp
lu

s

H
ea

lth
b

en
e�

ts

N
et

pr
es

en
t

va
lu

e

B
en

e�
t-

co
st

ra
tio

�

W/ demand e�ects 715.8 181.9 1,080.5 2,746.3 14,890.516,022.4 10.9
W/o demand e�ects �� 321.7 60.4 445.9 2,197.6 11,270.012,760.4 19.0
Random order 986.7 358.6 1,406.4 1,153.4 6,526.7 5,645.6 3.77
Shorter segments �rst 997.2 358.6 1,387.8 1,864.1 9,001.1 8,839.6 5.36
Shorter routes �rst 998.9 358.6 1,386.9 1,570.3 8,166.4 7,709.5 4.80
Longer segments �rst 983.6 358.6 1,410.4 694.4 5,187.5 3,846.4 2.89
Longer routes �rst 978.8 358.6 1,414.7 1,235.7 7,997.7 7,198.5 4.54

Table 2: Investment key-performance indicators [mill. DKK]. � Bene�t-cost ratio is dimen-
sionless.�� The solution found with the methodology from Paulsen & Rich (2023).
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From the results of the baseline strategies it is clearly shown that the overall project portfolio is
pro�table, leading to net present values between 3.8 and 8.8 billion DKK � largely driven by the
health bene�ts from added bicycle kilometers. The variation in net present value across the baseline
reference strategies are substantial, underlining that the order in which segments are implemented
have a large e�ect on the socioeconomic performance. It is also seen that taking a mathematical
optimization approach leads to large net present value improvements of at least 3.9 billion DKK
when using the method from Paulsen & Rich (2023) (W/o demand e�ects ) and 7.2 billion DKK
with the approach proposed in this study (W/ demand e�ects ), when compared to the best
baseline reference strategy (Shorter segments �rst ). Thus, the improved methodology leads to
a net present value increase that is 83% higher than that of Paulsen & Rich (2023), underlining
that taking demand e�ects into account in the optimization is highly important. Based on the
raw net present values of 16.0 billion DKK (W/ demand e�ects ) and 12.8 billion DKK ( W/o
demand e�ects ), the relative improvement is 26%.

We note that our optimization routine maximizes an approximation of the net present value, why
it is not surprising that the method from Paulsen & Rich (2023) leads to a higher bene�t-cost
ratio. Especially since that method stops when further expansions are no longer deemed pro�table
without considering demand e�ects. When considering these e�ects, more segments are deemed
pro�table, leading to a premature stop of investments for the W/o demand e�ects strategy.
Only investing in the most pro�table segments naturally lead to a high bene�t-cost ratio, but fails
to achieve the full potential net present value.

Discussion

We consider the same case study and project portfolio as in Hallberg et al. (2021); Rich et al.
(2021), and Paulsen & Rich (2023). Our demand model shares many similarities with Hallberg et
al. (2021) and Rich et al. (2021) in that we apply similar level-of-service data and model parameters.
However, in the present study we only consider choice of mode and not choice of destination. When
upgrading the entire network, we get a relative increase in the number of trips of 3.7%, which
compares to an increase of 4.5% in Hallberg et al. (2021). The di�erence is due to not considering
choice of destination. Also, the increase in average cycled trip distance of 8.3% are in line with the
7-8% of Rich et al. (2021). It suggest that our demand sensitivity are largely in line with previous
�ndings.

In Figure 4 we compare the solution of our proposed method with that of Paulsen & Rich (2023)
that does not incorporate demand e�ects. Clearly, we see that including such e�ects encourage
building longer routes further away from the city center and cause more segments to be pro�table
from a socioeconomic point-of-view. Hence, the integration of demand e�ects implies not only a
sizable increase in the welfare contribution, but change the spatial investment pattern as well. The
fact that the investment pattern becomes more spatially scattered have some positive indirect im-
plications for the practical implementation of such strategies. Where the solution without demand
e�ect is concentrated mostly the in city center, and hence discourages other municipalities from
taking part in the investment scheme, the improved solution actually goes across the geography and
makes it highly relevant for municipalities to collaborate when upgrading the infrastructure.
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