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Short summary

Major disruptions render the schedules of public transport operators infeasible. The majority of the
recently developed algorithms for updating these schedules assume the duration of the disruption
is known when they occur. However, in practice, this is generally untrue. This paper compares
three different models for Rolling Stock Rescheduling under uncertainty: an optimistic approach, a
strict-robust model inspired by the definition of disruption of Ben Tal et al, and a Light-Robustness
approach that aims to provide a middle way between the two.
The models are evaluated on a realistic case study of the Netherlands Railways. Initial results
indicate that building robustness against different disruption durations is worthwhile when alter-
native scenarios are associated with a sizable probability mass. The best approach depends on the
probability distribution over the different scenarios.
Keywords:public transport, passenger train rolling stock rescheduling, robust optimization, math-
ematical combinatorial optimization

1 Introduction

Railway operators all over the world transport millions of passengers on a daily basis. During
actual operations, railway operators may face major disruptions as a result of, e.g., a system
malfunction, an accident, or the complete blockage of a track segment by a fallen tree. In such
cases, the current operational plan becomes infeasible, and needs to be rescheduled. Research on
effective disruption management has led to many algorithmic tools for rescheduling the timetable,
rolling stock and crew schedule (see Cacchiani et al. (2014)). These types of advances support
operators in increasing the reliability of their operations’ reliability, hopefully positively impacting
their passenger volumes.
Our work focuses on robust rolling stock rescheduling assuming the duration of the disruption is
uncertain. Previous research on this topic, such as Nielsen (2011), Løve et al. (2002), and Wagenaar
(2016), have always assumed the duration of the disruption is known. Although such algorithms
could be used in a rolling horizon setting, this means that in practice they will often have either
over or underestimated the disruption duration.
Considering only a single disruption duration when rescheduling the rolling stock could result
in myopic, irreversible decisions that may negatively impact passenger comfort. For example, it
might be impossible to provide capacity for all passengers on a trip if the disruption lasts longer
or shorter than expected, trips may have unnecessarily been cancelled, or additional trips need
to be cancelled due to unforeseen shortages of rolling stock. If disruption duration variability is
considered when rescheduling the first time, then the quality of the service that the operator is
able to provide can be improved. Moreover, a minimization in the number of required updates has
a practical advantage. At many operators, the updating of the schedule requires manual updates
and communications, and the risk of errors is minimized when the frequency of these changes is
minimized.
The main contribution of this paper is a model that is able to reschedule the rolling stock schedule
in a robust way. This means that the rolling stock schedule requires no or small additional changes
in case the disruption duration turns out to be longer than orignally expected. Depending on the
level of robustness required, our model is able to give a full robust or a semi-robust solution. In case
of a full robust solution all important trips and all composition changes are robust against different
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disruption durations and in case of a semi-robust solution at least a given percentage of the trips
must be robust against different disruption durations. We also demonstrate that robustness comes
at a price and show what this price is for different practical settings.

2 Methodology

Problem definition

We consider the variant of the rolling stock scheduling problem as defined in Fioole et al. (2006),
with the additional complication that, in contrast to (Fioole et al., 2006), the duration of the
disruption is uncertain. Rolling stock scheduling thus entails finding a minimum cost assignment
of train compositions (a specific ordering of specific rolling stock type units) to a set of timetabled
trips. A trip refers to the movement of a train between two successive stops. It is assumed that
both the departure time and the arrival time of any trip are known. Associated with each trip is
a known, forecast demand that indicates the number of passengers who wish to make the trip. A
service refers to the movement of a train between two terminal stations and comprises a sequence
of trips. For any trip, its predecessor trip and its successor trip are specified in the timetable.
Figure 1 illustrates an example timetable, adjusted after a major disruption. Stations are depicted
as vertical layers, and time runs from left to right. A total of 44 trips is depicted, examples of
which include t1, t2, and t3. The sequence t1 − t2 − t3 provides an example of a service between
Amsterdam (Asd) and Arnhem (Ah).
The general objective of the rolling stock rescheduling problem is to minimize a weighted combina-
tion of the number of cancelled trips, the number of additional composition changes and shunting
movements in comparison to the planned rolling stock schedule, carriage kilometers, seat-shortages,
and end-of-day imbalances in rolling stock depot inventories.
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Figure 1: Timetable with disrupted area and short-turning.

Three approaches to robust rolling stock rescheduling

We propose three approaches for rolling stock rescheduling under uncertainty: a hopeful approach
(HOPE) that always assumes the shortest-possible disruption duration and updates the rolling
stock schedule step-by-step whenever this assumption is incorrect; a strict composition robust
approach (STR), inspired by robustness as defined in Ben-Tal & Nemirovski (2002); and a light
trip robust approach (LTR), inspired by light robustness as defined in Fischetti & Monaci (2009).
All models are mixed-integer-programming models customized for rolling stock rescheduling under
uncertainty. Unfortunately, the length of the abstract does not allow us to present them in detail
here.

3 Results and discussion

Case study

2 depicts our Netherlands Railways(NS) based case study, spanning with 3 lines a signifcant and
busy part of the network consisting or 1094 trips. We consider 16 different compositions, and thus
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223 different composition changes, and assume that composition changes may occur after every
trip.
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Figure 2: Train lines in the Netherlands. The lines in blue are the ones considered in the
case study.

Evaluation function

The quality of a schedule is defined, for each possible disruption scenario, by the weighted sum of
schedule changes. Table 1 gives an overview of the objective coefficients that we use in our exper-
iments to evaluate the rescheduling approaches, set in discussion with NS. We make a distinction
between rescheduling the first time (update λ0) and rescheduling thereafter again (update λi for
i ≥ 1).

Costs λ0 λi for i ≥ 1

Seat shortages: SS 0.1 0.1
Carriage costs p km: Carr. 0.01 0.01
Unplanned Shunting 10 100
Cancelled Shunting 5 20

Difference in end of day balance: EOD 10 10
Change in composition type: Composition 5 10

Cancellation of trip: Cancel 100000 100000

Table 1: Overview of costs

Detailed discussion of a single instance

There is a disruption between Utrecht (Ut) and Amsterdam (Asd) starting at 7:00 in the morning.
We have the scenario set S = {[(7 : 00, 9 : 00)], [(7 : 00, 9 : 00), (9 : 00, 11 : 00)]}. We show and
compare results of four of our rescheduling approaches; the HOPEapproach, the LTR approach
with α = 0.4 and α = 0.8, and the STR approach.
The results of our comparison regarding the different cost components and the overall objective are
given in Table 2. Here, the columns denote the total penalty paid for each different components
of the evaluation. Only ’Shunting’ denotes a combination of the penalties for both unplanned
and cancelled shunting movements. The first three rows of the table show the evaluation value
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and its components when rescheduling the original rolling stock schedule at time λ0 = 7 : 00 for
disruption end time d0 = 9 : 00, that is, for update u0 = (7 : 00, 9 : 00). In the second set of
rows we see the rescheduling costs that we incur if we need to reschedule for a second time, that
is, for update u1 = (9 : 00, 11 : 00). The third set of rows depict the total costs for scenario
S1 = [(7 : 00, 9 : 00), (9 : 00, 11 : 00)]. The final set of rows shows the expected evaluation value
and its cost components for the scenario set S = {S0, S1} with S0 = [u0] and π0 = π1 = 0.5.

Evaluation Approach (A) Evaluation SS Carr Shunting EOD Cancel Comps
value

HOPE 3066 1285 1181 65 100 0 435
LTR0.4 3199 1280 1184 140 100 0 495

’disr. ends at 9:00’ LTR0.8 3470 1300 1180 185 100 0 705
STR 3658 1231 1183 150 200 0 894

HOPE 4468 1385 1175 600 100 0 1210
’rescheduling costs’ LTR0.4 3908 1310 1178 260 100 0 1060

LTR0.8 3054 1150 1174 140 100 0 490
STR 2664 1281 1183 0 200 0 0

GC(A,R0, S1) HOPE 4968 1385 1175 665 100 0 1645
’disr. ends at 11:00’ LTR0.4 4543 1310 1178 400 100 0 1555

LTR0.8 3944 1150 1174 325 100 0 1195
STR 3708 1281 1183 150 200 0 894

GC(A,R0,S) HOPE 4017 1335 1177 365 100 0 1040
’expected value’ LTR0.4 3875 1300 1180 270 100 0 1025

LTR0.8 3707 1225 1177 255 100 0 950
STR 3683 1256 1183 150 200 0 894

Table 2: Evaluation values and their components for the single instance considered in
Section 3.

For short disruption lengths, the robust approach provides a cost that can be avoided using the
HOPEapproach. The main difference in schedules stems from the penalty for having more changed
shunting operations and the number of different compositions appointed. However, when the dis-
ruption last long (second scenario) the rescheduling for the HOPE approach is much more expen-
sive, in particular with respect to using different shunting operations and different compositions
than in the initial schedule. Whether building in this robustness is worthwhile, depends on the
probability on each of the two scenarios occuring.
The last set of columns denotes the expected evaluation value assuming a probability of 50% for
each scenario, indicating the STR approach as optimal in this example. Figure 3 shows the expected
evaluation values depending on the probabilities that we assign to the two scenarios ’disruption is
over at 9:00’ (π0) and ’disruption is over at 11:00’ (π0 = 1− π1). As can be seen, in this example,
each of the strategies is optimal for a certain range of probabilities: for a low probability of a later
disruption end time, i.e., π1 ≤ 0.22, the HOPEapproach is best, for 0.22 ≤ π1 ≤ 0.0.3 LTR0.4 is
best, for 0.3 ≤ π1 ≤ 0.45 LTR0.8 is best, for π ≥ 0.45 the STR approach should be used.
In general, we observe that the penalty for the additional canceling of trips is chosen so high
that the model avoids this measure completely. Composition changes, changes in the shunting
movements, and in the end of day balance, which are penalized moderately in the model, have
most influence on the evaluation. Seat shortages and costs for operating the carriages play a minor
role for this parameter setting.
Experiments concerning multiple scenarios, and different ways of dealing with uncertain disruption
length, are underway. Preliminary results indicate that whether the build-in of initial robustness
against a longer disruption length is worthwhile when the probability of longer disruption lengths
represents a significant probability mass.

4 Conclusions

We proposed three approaches to rolling stock rescheduling under uncertainty: HOPE, LTRand
STR. The first represent current approach, the second a Light-robustness approach, and the latter a
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Figure 3: Expected evaluation values. The figure zooms in on the interesting part between
0.2 ≤ π1 ≤ 0.5

strict robustness version in the spirit ofBen-Tal & Nemirovski (2002). Mixed-Integer programming
formulations have been developed for all three, that within a reasonable time can be solved with
a commercial solver like CPlEX, Gurobi,etc. These approaches are evaluated on a realistic case
study for Netherlands Railways. The results indicate that it is worthwhile to build in robustness
for multiple possible durations of the disruption when there exists a reasonable probability for an
alternative scenario. Which approach in expectation is best depends on the probabilities associated
with each disruption scenario.
Current work is evaluating the model for multiple cases and multiple scenarios. Moreover, a
sensitivity analysis for the selection of objective-parameters is on its way.
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