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SHORT SUMMARY

The available capacity in transportation networks is distributed among multiple modes, with some
benefiting from an exclusive usage while others competing over the same space. Because the
average occupancy of buses is the highest, they are usually allocated dedicated lanes where the
speed is larger than in the rest of the network. Private vehicles and ride-hailing drivers use the
remaining portion of space which is highly subject to congestion. In this study, we propose to
mitigate traffic congestion in the main network by allowing only pooled ride-hailing drivers to
use the underutilized capacity in bus lanes. By modeling the accumulation in the system under
steady-state using a Macroscopic Fundamental Diagram theory, we show that the optimal strategy
that minimizes delays for multi-modal users occurs when a fraction of the pooling vehicles uses
the bus network. An adequate pricing discount for pooled trips drives the network towards this
system optimum.

Keywords: Multi-modal networks, network delays, public transportation, regulations, ride-splitting
services, space allocation.

1. INTRODUCTION

Ride-hailing platforms provide a fast and reliable door-to-door service by picking up passengers
from their origins and dropping them off at their desired destinations. Ride-splitting services are
fundamentally similar with the exception that two or more passengers are allowed inside the ve-
hicle. This reduces the size of the fleet necessary to satisfy the ride-hailing demand but compels
passengers to undertake larger travel distances. Because network spatial availability is becoming
more of a concern recently, many regulations are being put forward to target the operation of ride-
hailing platforms and to restrict their impacts on traffic congestion. Off-street parking spaces for
instance can be efficiently utilized by idling ride-hailing drivers to prevent on-street cruising (Li
et al., 2020). Encouraging ride-hailing users to share their rides is one of the possible solutions
adopted to address the issue of limited network capacity. Shaheen and Cohen (2019) and Tirachini
and Gómez-Lobo (2019) both provide a review of available work on pooling in the context of
e-hailing and car-sharing and validate the potential of trip sharing in mitigating congestion and re-
ducing Vehicle Kilometers Traveled (VKT). Ke et al. (2020) used a linear speed-density relation-
ship to compute the maximum achievable ride-hailing and ride-splitting service rates and showed
that under specific conditions, pooling decreases the travel time for all network commuters. How-
ever, when the origin and destination locations of pooled passengers are not identical, trip sharing
comes at the expense of an additional detour. This detour is however lessened as more and more
passengers engage in pooling (Ke et al., 2021). This, along with the discount factor that passen-
gers receive for pooling, are the main determinants for the willingness to share (Alonso Gonzalez
et al., 2020; Lo & Morseman, 2018).
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Figure 1: Summary graph of the space allocation strategy and the demand spit over
the available network capacity

To improve network conditions by guaranteeing a high pooling engagement level, network regu-
lators have the option to redistribute the existing space over different available modes by granting
permission for pooled ride-hailing vehicles to travel on dedicated bus lanes to perform a faster yet
longer trip. No solo trips are however allowed in the bus lanes. This serves as an incentive to
motivate users to share their rides with other users of the system. The ultimate goal is to mitigate
the effect that ride-hailing vehicles have on congestion while guaranteeing that the total delay for
all other modes is minimized. The objective of this study is to hence put forward a comprehensive
framework for modeling and assessing delays for multi-modal networks under the proposed pol-
icy. Once the characteristics of this system optimum are identified, we elaborate on one possible
pricing scheme that drives the system towards its minimum point.

2. METHODOLOGY

The following section elaborates on the model that enables us to examine the redistribution of
ride-splitting demand in urban space in the existence of other modes of transport. In the network
under consideration, travelers perform their trips by one of the set M of available options: private
vehicles pv, buses b, or ride-hailing services rh, such that M = {pv,b,rh}. Commuters who
opt for ride-hailing have the choice to either travel solo or to pool their trips with other users
of the service. We refer to the latter two trips as s and p respectively. Concerning the spatial
distribution in the network, buses exclusively utilize dedicated bus lanes to transport passengers,
and the remaining fraction of the network that we denote by α ∈ [0,1] is allocated to private
vehicles and the fleet of ride-hailing drivers. When α = 0, the full network space is devoted to
buses whereas when α = 1, the network becomes an exclusive vehicle network. In the event where
drivers are matched to a pooled trip, a fraction of the pooled trips is allowed to perform the whole
ride in the bus network. Elsewise, all idle, dispatched, and solo-ride drivers travel in the vehicle
network in conjunction with private vehicles. For the rest of this study, we will refer to the vehicle
network as V , and to the bus network as B.

Let Qm be the exogenous travel demand for mode m ∈M expressed in passengers per hour, their
values remaining unchanged in this study. The split of ride-hailing demand between solo and
pool however is assumed to be variable. Therefore, we let β ∈ [0,1] denote the fraction of Qrh

that selects a solo trip. In particular, we investigate the optimal value of β that minimizes the
total delay for all network commuters. Mainly, when ride-hailing users choose to pool such that
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Qp = (1− β )Qrh is the demand for pooling, this portion of the demand interferes with the bus
speed causing it to decrease. To avert any disturbance to public transportation, we introduce a
parameter γ ∈ [0,1] corresponding to the fractional bound of pooling drivers that are allowed to
use the bus lanes. If instead ride-hailing users choose to travel solo such that Qs = βQrh is the
demand for solo trips, they affect the speed in the vehicle network. Another element that has a
significant influence on the speed in the bus and vehicle networks is the factor α dictating the size
of each one. The larger the value of α , the higher the capacity of the vehicle network, and the
lower that of the bus network. Within this context, we additionally investigate in this study how
the optimal demand split between solo and pool trips varies with α . The ultimate purpose is to
assess how the three variables α , β , and γ affect the quality of the mobility in a network. Figure 1
provides a summary of the previous information including the different modes of transport and the
variables defining our model.

To evaluate network delays, a proper estimation of the speeds in the vehicle and bus networks,
that we denote by vV and vB respectively, is required. According to the model in Figure 1, vV is
function of the accumulation of private vehicles npv, empty/solo-trip e-hailing vehicles ns, and the
fraction of pooled drivers utilizing the vehicle network nVp . The accumulation in the bus network
is composed of the remaining pooled drivers that we denote by nBp and the bus fleet nb. We point
out here that because buses have to repeatedly dwell at bus stops, their influence on speed is not
equivalent to that of the pooled vehicles. Moreover, as we previously described, both speed func-
tions are dependent on the fraction α which dictates the space division between the two networks.
For us to examine the values of travel times for each individual mode, we resort first to aggregate
traffic flow models to define the relationship between speed and accumulation.

Traffic dynamics

In the model we presented, the space-mean speed is a crucial element to evaluate the average trip
time for all mode users. Let n be the total accumulation in a network, and v = v(n) its speed. We
know that as the accumulation n increases, the network becomes more and more congested and
hence the speed in the network decreases with ∂v/∂n ≤ 0. Under steady-state conditions, if Q
is the total effective trip demand and l is the average trip length, then the vehicle production P
expressed in vehicle kilometers per unit time is defined by P(n) = nv(n). Hence, when the system
is at steady-state, it must hold that P(n) = Ql.

Under the proposed space allocation strategy, the network infrastructure is segmented into two
distinct subnetworks, each having its own production Macroscopic Fundamental Diagram (MFD).
Let nV = ns+nVp +npv be the total vehicle accumulation in the vehicle network covering a fraction
α of the total available space. Having a well-defined production MFD function for the full network
makes it possible to derive that of the vehicle network using the spatial fractional split factor α .
This corresponds to a rescaling of the full network MFD such that if PV is the production function
for the vehicle network only, then αP(n) = PV(αn). Similarly, the production in the bus network
is related to the full network production by knowing that (1−α)P(n) = PB((1−α)n). Figure 2(a)
shows an example of the production functions used for a value of α = 0.8. In contrast however to
the vehicle network, simply adding up nb and nBp does not yield a reliable estimation of the vehicle
running speed from the production function. This is because an adjustment is required to account
for the frequent stops of buses at stations and the resulting hindering of vehicle movements. This
effect is observed when translating the bus network MFD to the three-dimensional space where
the accumulation of buses and vehicles are dissociated (Geroliminis et al., 2014; Loder et al.,
2017; Fu et al., 2020). In this case, looking at the passenger flow instead of the vehicle one is
more substantiated because buses have a larger average occupancy compared to pooled vehicles.
Figure 2(b) displays an example of the 3D passenger MFD (3D-pMFD) that we use in this work
to compute bus passenger delays among others if pooled vehicles traveled on the bus lanes.
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Figure 2: Vehicle production and passenger production MFDs from which speed is
derived

Network accumulation

Once all these relationships are established, it becomes possible to convert all demand values into
vehicle accumulation under steady-state conditions. For the ride-hailing operator, this is crucial to
estimate the fleet size required to satisfy the demand level. Assuming that β = 1, i.e., no pooling
occurs, the fleet size N required to serve the totality of the ride-hailing demand Qrh consists of
(i) idling vehicles, (ii) dispatched vehicles on their way to pick up a passenger, and (iii) occupied
vehicles, i.e.,

N = I +Qrh d(I)
vV

+Qrh l
vV

. (1)

In Equation (1), I is the number of idle vehicles, d is the dispatched distance from a request’s
origin location to the nearest idle vehicles. It is itself dependent on the density of unoccupied
vehicles such that ∂d/∂ I < 0 because the higher this density, the greater the chance of matching
the passenger to a neighboring empty vehicle.

In the event of pooling, we accommodate the possibility of sharing a trip with one other ride-
hailing user by diving the number of dispatched and occupied vehicles by two. Nevertheless, a
pooled trip requires drivers to travel an additional distance ∆ld to perform a supplementary pick-
up and drop-off operation. Ideally, the highest pooling benefit is achieved when this distance that
we refer to as the driver detour goes to zero, i.e., when two passengers share the same origin and
destination. The probability that this occurs is higher when Qp is large. When the engagement
level in pooling is low however, the detour is arbitrary large that the trip becomes unattractive to
passengers. In this study, we assume that this function monotonically decreases with Qp such that
∂∆ld/∂Qp < 0. Given that the users of the vehicle network consist of solo/empty ride-hailing
drivers, a fraction of pooled drivers, and private vehicles, its accumulation nV is given by

nV = d−1(τvV)+Qsτ +
1
2

Qpτ +Qs l
vV

+
1
2
(1− γ)Qp

(
l +∆ld(Qp)

vV

)
+Qpv l

vV
, (2)

where τ is the expected waiting time that the operator aims to achieve. The first term in Equa-
tion (2) determines the number of idle vehicles so that the target service level is reached. The
second and third terms compute the number of dispatched vehicles for both solo and pooled trips
assuming that dispatching occurs in the vehicle network for all types of trip assignments. The
fourth and sixth terms return the number of drivers performing a solo trip and the number of pri-
vate vehicles respectively, each with an identical average trip length l. Finally, the fifth term is the
number of drivers completing a pooled trip in the vehicle network nVp . In the same manner, the
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quantity nBp for those pooled trips using the bus network is given by

nBp =
1
2

γQp
(

l +∆ld(Qp)

vB

)
. (3)

This category of drivers however travel with a speed of vB instead of vV .

Similarly, we can compute the number of buses required to serve the total bus demand Qb while
maintaining an average bus occupancy of ob through

nb =
Qblb

obvb
. (4)

In the expression above, lb is the average trip length for bus passengers and it is generally greater
than l. Moreover, vb is the speed of the buses. Since buses make repetitive stops at stations to
board and alight passengers, the running speed in the bus network vB is reduced by a factor less
than or equal to one which depends on the average spacing between stops s and dwell time td such
that

vb =

(
1

1+ vB
td
s

)
vB . (5)

Both the variables β and γ that we investigate in this study influence the network accumulation
and the fleet size. The variable β controls the split of ride-hailing demand between Qs and Qp

while γ dictates the spatial split of Qp between the vehicle and bus network. Irrespective of their
values however, the results that we obtain are always dependent on a strategic decision related
to the network infrastructure modeled here by α . Because this parameter shapes the production
functions, it alters the values of speed vV , vB and vb.

System optimum

Because the purpose of allowing pooled vehicles to use bus lanes is to decrease the total delays
for all commuters in the network, we investigate under a fixed network spatial split α what are the
values of β and γ that will minimize the Passengers Hours Traveled (PHT) for all three mode users:
buses, private vehicles, and ride-hailing users. The ultimate objective is to mitigate congestion in
the vehicle network while simultaneously making sure that disturbances to buses are contained
within acceptable ranges. Therefore, we model our objective as the sum of the individual PHT for
every category of travelers with the function being expressed as

minimize
β∈[0,1],γ∈[0,1]

Qpv l
vV

+Qs l
vV

+(1− γ)Qp
(

l +∆lp(Qp)

vV

)
+ γQp

(
l +∆lp(Qp)

vB

)
+Qb lb

vb
, (6)

where the first, second, and last terms correspond to delays for private vehicles, solo passengers,
and bus users respectively. The third term reflects the PHT for pooled passengers using the vehicle
network whereas the fourth one assesses delays for pooled passengers on the bus network. Note
here that we substitute the driver detour ∆ld with the passenger detour ∆lp to consider the additional
distance incurred by passengers compared to a direct trip between their origins and destinations.
The behavior of the passenger detour however is assumed to be comparable to that of the driver
detour such that they both monotonically decrease with Qp.

When γ = 1, the solution to minimizing delays in the network is narrowed down to finding the
optimal β given that all pooled passengers use the bus network. We refer to this particular sce-
nario as {pv,s}V |{p,b}B to show that pooled vehicles p exclusively use the bus network. When
γ ̸= 1 and γ ̸= 0, we denote this scenario by {pv,s, p}V |{p,b}B where p appears in both net-
works. Finally, we refer to the scenario where all ride-hailing drivers utilize the vehicle network
by {pv,s, p}V |{b}B which indicates that network B is exclusively dedicated to buses. This cor-
responds to the scenario where the system behaves without any particular intervention from the
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Table 1: Main parameters

Parameter Symbol Value Unit
Demand for private vehicles Qpv 70000 pax/hr
Demand for buses Qb 20000 pax/hr
Demand for e-hailing Qrh 14000 pax/hr
Average vehicle trip length l 3.86 km
Average bus trip length lb 5.40 km
Average spacing between bus stops s 0.8 km
Dwell time td 40 sec
Platform target waiting time τ 2 min
Mean bus occupancy ob 20 pax
Network area A 107 km2

regulator. The decision variable here consists again of solely finding the optimal demand split that
minimizes total delays. The reason why the solution does not always yield a value of β = 0 is
because the detour comes into question in this particular setting. Consequently, when the total
ride-hailing demand is lower than the critical boundary after which pooling becomes interesting,
a scenario where Qp = Qrh is not necessarily the optimum.

3. RESULTS AND DISCUSSION

In the following section, we present a comprehensive analysis of the influence of β and γ on the
network delays, and how these delay values change with the spatial fractional split α . We assess
the system optimum from a macroscopic approach for the main three scenarios {pv,s}V |{p,b}B,
{pv,s, p}V |{p,b}B, {pv,s, p}V |{b}B by resorting to a numerical example. The main fixed param-
eters that we consider in this example are presented in Table 1. We assume that the dispatched
distance d as function of the idle drivers is given by d(I) = 0.63

√
A/I. The production function

of the entire network under consideration is

P(n) = max
(

35n
1+ exp((n−22000)/12683))

−0.0001,0
)
, (7)

and its shape is shown as the dashed curve in Figure 2(a). The three-dimensional vehicle MFD
for the bus network is given by max(0.8,−0.2nb/500+1)(np +nb)vB and is used to compute the
running speed in the bus network. With regard to the driver and passenger detour, they are retrieved
from the results generated by a matching optimization framework using simulated data taken from
Beojone and Geroliminis (2021). The results are then fitted into the following functional from
where ∆ld(Qp)/l or ∆lp(Qp)/l is equal to (a/Qpb)c and a = 3.72, b = 0.32, and c = −0.012 for
the passenger detour, and a = 7.18, b = 0.147, and c =−1.28 for the driver detour.

For the scenario where all ride-hailing vehicles are using the vehicle network, the results for the
accumulation and PHT as a function of β for a different spatial split of the two networks are
presented in Figure 3. First, the network accumulation is naturally the lowest when the full ride-
hailing demand is pooling and when α takes the largest value possible while still accommodating
the bus demand. This means that a sufficiently high spatial capacity is granted for private vehicles
and ride-hailing vehicles, as can be seen from Figure 3(a). However, this does not entail that the
minimum for PHT is achieved for the same values of α because as α increases the space available
for buses shrinks causing very high delays to travelers on the bus network. This is inferred by
looking at Figure 3(b) where the PHTs for different values of β start increasing after reaching
the minimum. By comparing the results in Figure 4 to the scenario in Figure 5(a) where pooling
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Figure 4: Accumulation and PHT for {pv,s}V |{p,b}B (γ = 1)

vehicles exclusively utilize the bus lanes, a significant drop in the accumulation is observed. How-
ever, this comes at the expense of an increased PHT particularly for cases where α is high which
implies that any addition of vehicles to the bus network severely impacts the delays for bus users
as shown in Figure 5(b). What is interesting to note is that, unlike the previous case, we obtain
very similar values for the system optimum independently of the value of α .

In Figure 5, we assess the system optimum for the three different strategies proposed for a prede-
termined network split fraction α . The objective is to evaluate whether by relaxing the constraint
that all pooled vehicles must use the bus network, we are able to achieve some improvements by
bounding the amount of disruption allowed for the operation of buses. Figures 5(a) and 5(b) show
the results of PHT as function of the fraction of pooling vehicles allowed to use the bus lanes for
α = 0.85 and α = 0.9. For high values of β , the value of γ that minimizes the PHTs is equal to
1 because of the low engagement levels in pooling. If all pooled vehicles hence use the bus lanes,
the disturbance to buses is naturally limited but the improvements to the vehicle network are still
noticeable. Nevertheless, when the number of pooled vehicles is high, the system optimum is
achieved for a value of γ < 1. This is because the delay for buses becomes the factor modulating
the objective in this case. The same applies for α = 0.9 except that for this case, the best solutions
are achieved for high values of β yet lower γ since the potential of exploring the underutilized
capacity in the bus lanes is restrained.

Figure 6 summarizes the optimal pooling demand split for different values of α and β . For as long
as the bus network capacity allows, Figure 6(a) shows that the optimal γ is equal to 1 if the demand
for pooled rides is low. It starts decreasing rapidly however for high values of α indicating that
the exploration of the underutilized capacity is not substantiated when the bus network consists of
a relatively insignificant fraction of the full network. Moreover, when we look at the speed in both
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networks for the different values of γ , we notice that these values are set so that the running speed
in the bus network continues to be high enough to guarantee that users’ delays remain acceptable
as shown in Figure 6(b).

To illustrate how the results of this work can potentially be utilized to drive the network into
the system optimum, we replicate the choice of ride-hailing users for the following scenario
{pv,s}V |{p,b}B as a mode choice model that outputs β MC as a function of the costs for traveling
in the vehicle and bus network. The equation for β MC is given by

β MC =
exp(−κ(Fs +µts))

exp(−κ(Fs +µts))+ exp(−κ(φFs +µt p))
(8)

In the above equation, ts and t p are the travel time for solo and pooled trips, κ > 0 is the binary
mode choice scale parameter, µ is the monetary value of time, and Fs is the fare for solo rides.
To encourage ride-hailing users to share their rides, the service operator introduces a discount
factor to Fs that we denote here by φ . Combining the obtained results with the choice model, we
investigate what should be the discount gap given here by |φ − φ ∗| to drive the split towards β ∗

which is the point that minimizes the total PHT. The value φ ∗ in this case is the discount factor
that yields a demand split naturally occurring at β ∗.

To elaborate more on this approach, we take an example for α = 0.86 and display in Figure 7(a)
the PHT for the scenario under consideration but also for the other two scenarios for the sake of
comparison. If the fraction of passengers opting for a solo ride is greater than 0.45, there is no
improvement occurring by allowing only a fraction of the pooling demand to use the bus network,
which explains the overlap between the full and dotted lines when β > 0.45. The gap however
starts increasing between the two lines when β is low. Consequently, reducing network delays
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by allowing pooled vehicles on bus lanes is beneficial but should be restricted. Otherwise, the
delays caused to buses counterbalance all the advantages associated with pooling. Figure 7(b)
shows the discount gap in absolute value between the optimal point where the fare of ride-hailing
services happens to fall at the minimum of the PHT curve, and between the service pricing for all
the remaining range of possible solutions. A relatively low discount leads to solutions coinciding
with high values of β which means that passengers are not given enough motivation to pool.
Contrarily, a very high discount causes passengers to continue pooling even if the speed in the bus
network is low. For these specific settings, instead of penalizing the pooling demand by reducing
the discount which from a regulatory point of view is not substantiated, it is possible to improve
delays by restricting the access to the bus lanes and hence moving downwards to the dotted curve
in Figure 7(a).

4. CONCLUSIONS

In this paper, we have analyzed how, by giving pooled ride-hailing vehicles access to dedicated
bus lanes, we can improve the performance of the transportation network under some specific
settings. Our results show that when the bus network is relatively large and the pooling demand
is low, assigning pooled drivers to bus lanes improves congestion in the vehicle network without
causing large disturbances to the flow of buses. When the fraction of pooling demand is high, the
bus disturbance becomes more accentuated and an increase in the bus network delays is inevitable.
In this case, it is useful to restrict a portion of the pooled vehicles to travel on bus lanes to be able
to derive benefits from the proposed policy. Additionally, in this study, we assessed one simple
pricing strategy that drives solutions obtained from mode choice models to the system optimum.
In the future, we plan to investigate different and more elaborated pricing strategies to help us
achieve the same objective. We also plan to introduce a dynamic extension of the model and study
how the results can be generalized to other network settings.
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