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SHORT SUMMARY 

 
Signalized intersections are a fundamental part of urban networks. Their understanding is crucial 
to identify congestion patterns, queues, delays, and safety issues in local and network level. In 
this work, we analyze multimodal vehicle trajectories and propose a methodology to extract the 
signal timing schedule of an intersection using the pNEUMA dataset. In addition, we combine 
the available information from OpenStreetMap (OSM) to map match the trajectories to the 
underlying network and to identify more accurately the location of traffic signals. Then the 
methodology to extract the signal timing schedule of an intersection consists of the following 
steps: i) critical movements identification, ii) computation of crossing times at the traffic signals, 
iii) cycle length detection and iv) phase length of each critical movement. Results show that by 
using the OSM data, the methodology can then be applied to any intersection in the network and 
provide critical information in macroscopic level. 
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1. INTRODUCTION 
 
The analysis of signalized intersections in a congested urban environment is an important step 
towards an efficient and intelligent traffic management. However, the lack of data in such an 
environment has prevented the transportation researchers from analyzing intersections with real 
and accurate data to study their performance in terms of level of service or safety. Recently, the 
use of drones has allowed the collection of a massive dataset nicknamed pNEUMA. The dataset 
is a first-of-its-kind experiment and comprises thousands of naturalistic trajectories in central 
Athens, Greece (Barmpounakis and Geroliminis, 2020). This unique environment with heavy 
congestion and a high density of intersections challenges the existing methods of traffic analysis 
and needs new methods for proper analysis. Using this dataset and OSM, the aim of this paper is 
to propose a methodology to extract the signal timing schedule of an intersection (cycle length 
and phases’ lengths) to allow a more detailed analysis regarding level of service, emissions, and 
road safety. The fact that signal timing might not always be available for use highlights the 
importance of having an automated method to extract it from vehicle trajectories. While the city 
of Athens operates with pre-timed traffic signals, we expect that this method is directly applicable 
for adaptive signals as well.  
 
Signal timing detection from trajectories has not gathered a lot of attention from the traffic 
research community. Many intersections equipped with smart traffic signals software can already 
report signal timing data. However, this information is not always available to researchers or 
practitioners. The different methods proposed in the literature depend greatly on the input data 
and assume that queues are fully discharged at each cycle or oversaturated conditions. While cycle 
length can also be estimated in undersaturated conditions, the green time estimations would only 
be a lower bound of the real phases. A first example of a signal timing method is described in 
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(Axer and Friedrich, 2016), where the authors identify the cycle length from low frequency 
floating car data by checking the distribution of the times the vehicles cross the stopping line. 
Their main idea is to check different cycle lengths, perform a modulo operation and check if the 
resulting distribution resembles a uniform distribution with an Anderson-Darling test. If the cycle 
is correctly chosen, the distribution of crossing times should not be a uniform distribution during 
the whole cycle length, as vehicles are only allowed to cross during green time. Moreover, 
regarding the evaluation point of the crossing times the authors argue that the stopping line 
corresponds to the point with highest density of speeds below 3 km/h.  
 
The stop line where to evaluate the crossing times is a vital step towards a correct signal timing 
detection. This can be manually set like in (Hao et al., 2012) or can be obtained from shockwave 
analysis (Zhou et al., 2021). It is clear that manually setting the stop lines in large urban networks 
with a high density of signalized intersections is not possible. On the other hand, shockwave 
analysis is a good tool to detect stop lines but additional information like intersection type is 
needed. With regards to (Hao et al., 2012), travel times before and after the intersection are used 
to compute cycle lengths and phases. An iterative process is used to estimate cycle breaks, 
effective green and red times. Regarding (Zhou et al., 2021) it represents a first approach to signal 
timing detection using the pNEUMA dataset. The authors used shockwave theory to analyze 
trajectories in a single arterial containing three signalized intersections. The cycle length detection 
was based on a clustering algorithm (DBscan) of the stopped vehicles, where each cluster 
represented a cycle. To infer the green and red times, the minimum and maximum times in each 
cluster were taken as a reference. While the results presented are clearly promising, the approach 
lacks flexibility and cannot be easily generalized to all the intersections of the network. 
 
It can be seen that with the further development of new urban data collection techniques, new 
methodologies are needed to extract signal timing data in a scalable way. In the case of the 
pNEUMA dataset, the only information available is that traffic lights have a fixed timing plan 
during the recording period. Additionally, the OSMnx Python package provides an easy tool to 
retrieve crucial information to represent the network with nodes and edges as well as traffic signal 
location (Boeing, 2017). Then, it is possible to detect the intersections of the network and classify 
them into signalized, unsignalized or roundabouts and focus on the analysis of the first. 
 
In this paper we propose a methodology that uses detailed and high-quality trajectory data and 
the available information in OSM for an efficient applicability and generalization. By retrieving 
the traffic signals’ locations from OSM we can automatically establish stop lines to evaluate 
crossing times. The analysis of the crossing times is the basis of the methodology presented in the 
next section. 
 
 
2. METHODOLOGY 
 
In this section we provide the methodology to detect the signal timing schedule of an intersection. 
We will then extend the method for all intersections across the network, so to additionally identify 
offsets. Figure 1 shows a flowchart of the process to detect signal timing from trajectory data and 
OSM. The two inputs are used to detect the location of the intersections as well as the traffic 
signals’ locations. Using a Hiden Markov Model (HMM) based map matching algorithm (Meert 
and Verbeke, 2018), we match the trajectories to the underlying network which is represented as 
a graph. This is a critical step since the map matching allows to keep track of the streets where 
vehicles are present, and thus it allows to check the critical movements for each direction and 
intersection. Once the critical movements are identified, the final step concerns the core part of 
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this paper which described the methodology to identify cycle and phases’ lengths with time-series 
analysis. 
 

 
Figure 1: Methodology flowchart 

 
An intersection is composed of two or more streets. In a simple intersection with just two roads 
the maximum number of movements is 12 considering that both roads are two-way, and all 
possible turns are allowed. Although, in a dense urban environment like the central district of 
Athens, intersections have limited movements allowed and numerous shapes, the methodology 
presented here is suitable for all kinds of signalized intersections. The added value of this 
methodology is that only relies on trajectory data and open Street maps, meaning that it can easily 
transferred to multiple locations with similar data collection.  
 
Critical movements, stop lines and crossing times 
 
The intersection is defined as a subgraph of the network graph. The subgraph is composed of a 
collection of nodes and edges, and the attributes of the nodes allow to detect the presence of traffic 
signals. Thanks to the map matching algorithm, each trajectory is described with the links of the 
network graph. Therefore, by checking the paths followed by the vehicles’ trajectories we 
conclude which are the critical movements. However, due to noisy trajectories or illegal 
movements -mostly Powered-Two-Wheelers (PTWs)- the map matching algorithm can 
sometimes provide erroneous link assignments. Together with the fact that a big proportion of 
PTWs do not strictly respect traffic signals (for instance, crossing seconds before the light turns 
green, stopping after the stopping line etc.), it was decided to remove the PTWs from the analysis. 
 
For each critical movement identified, the presence of traffic signals along the movement is 
verified. If a signal is detected a virtual loop detector perpendicular to the direction of the street 
is installed in its location. This allows to check the times where trajectories cross the virtual loop 
detector. Mathematically, we represent the set of critical movements as M and 𝑆! as the set of 
vehicles driving through critical movement 𝑚	 ∈ 𝑀. Then, 𝑡"! represents the crossing time of the 
vehicle 𝑖 ∈ 𝑆! in movement 𝑚	 ∈ 𝑀. For each movement, we obtain the vector of crossing times: 

 𝑡!(((((⃗ = [𝑡"!		𝑖 ∈ 𝑆!], 𝑚	 ∈ 𝑀 (1) 

 
Cycle length detection 
 
The goal of the cycle length detection is to identify the cyclic behavior of the crossing times. In 
most intersections all movements have the same the cycle. However, it has been seen that in some 
intersections some movements have different cycle lengths. For instance, a certain movement can 
have a cycle of 45 seconds and other movements have a cycle of 90 seconds inside the same 
intersection. Therefore, 𝑐! represents the cycle length of movement 𝑚	 ∈ 𝑀.  
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In order to obtain the cycle length of each movement the histogram of the crossing times is 
computed in 1-second bins. Then, a smoothing of the histogram with a moving average (20-
seconds window size) is performed. This allows to detect crossing time peaks that repeat every 
cycle. To ease the peak detection task, the autocorrelation function of the smoothed histogram is 
also computed. The autocorrelation function allows an easier peak detection since all the values 
are always in the interval [-1, 1]. Then, using a peak detection algorithm with a minimum distance 
of 40 seconds between peaks (equivalent to a minimum cycle constraint) the times of the peaks 
are identified. Then, 𝑝#! represents the time of the j-th peak for movement 𝑚	 ∈ 𝑀, and the 
difference between two neighboring peaks is equal to the cycle length detected. Finally, 𝑐!(((((⃗  
represents the vector of cycles detected in movement m, and the median of the cycles’ distribution 
is assumed to be the cycle length 𝑐! of movement m (rounded to the nearest multiple of 5). 
 

 
𝑐!(((((⃗ = 	 0𝑝#$%! − 𝑝#!			0 ≤ 𝑗 ≤ 𝑁 − 17 

𝑐! = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑐!(((((⃗ ) 
(2) 

 
Phase length detection 
 
As aforementioned, the cycle length is only a value indicating the repetitiveness of the crossing 
times. To complete the signal timing the red and green phases need to be detected. To do so, we 
take the reminder of the division between the crossing times 𝑡"! and the cycle length 𝑐!, also 
known as modulo operation (Equation (3)). Then every crossing time is transformed such that: 
 

 𝑡",'! = 𝑡"!	𝑚𝑜𝑑	𝑐! (3) 

 
Performing the modulo operation (expressed as mod) allows to see the real crossing times inside 
a cycle. By analyzing the distribution of the new crossing times 𝑡",'! , the 1st and the 99th percentiles 
are assumed to be the starting and ending times of the effective green phase 𝑔!. Although PTWs 
have been removed from this calculation, the choice of the 1st percentile reflects the impatience 
of some drivers to cross the traffic signal when it is about to turn green. In a similar way, the 
choice of the 99th percentile is also justified by those vehicles that cross the traffic signal moments 
after turning red. The yellow phase is assumed to be 3 seconds and finishes with the ending of the 
effective green time.  
 
3. RESULTS AND DISCUSSION 
 
The results shown in this section refer to the intersection between Alexandras Avenue and 
October 28th Avenue, one of the busiest intersections in central Athens. Figure 2 shows the outline 
of the intersection from OSM on the left side, while the right side presents the graph 
representation. As aforementioned, extracting the OSM network and its characteristics allows to 
represent intersections as graphs and identify the location of traffic signals (marked in red on the 
graph). 
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Figure 2: Intersection between Alexandras Avenue and October 28th Avenue. The 
layout from OSM is shown on the left while the graph representation on the right 

 
Next, we show an example of the methodology described in section 2 for a specific movement of 
the intersection in Figure 2 (movement number one concerns the flow of vehicles driving from 
Alexandras Avenue and turn left towards October 28th Avenue). The trajectories used for the 
purpose of this example are from Monday 29th October 2018 from 10:00 to 10:30. Figure 3a 
shows the histogram of the times vehicles crossed the stop line of the traffic signal. A clear cyclic 
behavior can be identified from the histogram. To recognize the cycle length of this movement, 
Figure 3b shows the moving average of the histogram and Figure 3c) shows the autocorrelation 
function of the moving average. The peaks of the autocorrelation function have been added on 
top with orange crosses, and after analyzing them the cycle of this movement is set to 90 seconds. 
Finally, Figure 3d presents the histogram of the modulo times inside the cycle. The 1st and the 
99th percentiles indicate the start and the end of the effective green, which has been set to 24 
seconds.  
 
 

 
Figure 3: Example of the methodology for a particular movement. A) Histogram of 
time crossings, b) Moving average of the histogram, c) Autocorrelation function, d) 

Histogram of times inside cycle 
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Figure 4: Signal timing schedule for the critical movements of the intersection 

 
The methodology was repeated for every critical movement identified in the intersection, which 
allowed to identify all the green times and their sequence in time. This is shown in Figure 4, where 
the signal timing schedule with the critical movements is presented. For this intersection, the 
analysis of the trajectories showed a perfect cyclic behavior since all the movements had a cycle 
length of 90 seconds. The phases for movements 1, 2, 3, 4 and 5 were 24, 44, 39, 22, and 46 
seconds respectively.  
 
The results regarding the intersection of Figure 2 refer to a saturated intersection with no red-light 
violations. However, the high density of intersections in the pNEUMA dataset presents a variety 
of situations that differ from the intersection of the example. For example, small intersections in 
under-saturated conditions are difficult to analyze especially regarding the phases’ times. Indeed, 
the results provided by the methodology are only a lower bound of the real green times. Figure 5 
shows the results of the methodology when applied to the 97 signalized intersections of the study 
area of the pNEUMA dataset (data from 01/11/2018, 10:00-10:30). The data reveals that most 
intersections have 90-seconds cycles while some intersections in specific arterials have 45-
seconds cycles. Moreover, some intersections have combined cycles (45 and 90 seconds). These 
have been plotted with two colors. 

 
Figure 5: Cycle lengths of the intersections in central Athens 
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Finally, Figure 6 presents a time-space diagram for a 700-meters segment of Panepistimiou 
Avenue, one of the most heavily congested in Athens. The diagram also shows the green, yellow 
and red times of the through movements at the 7 intersections of the segment. The results show 
the synchronization of the traffic signals along the arterial, which allows most of the vehicles to 
drive through the avenue without stopping at the intersections. In addition, an increased flow 
during yellow phases can be observed at some intersections.  
 
 

 
Figure 6: Time-space diagram in Panepistimiou Avenue for through movements 

with green and red times at the intersections 
 
 
4. CONCLUSIONS 
 
The research presented in this short paper proposes a new methodology to extract signal timing 
from high-quality vehicle trajectories using powerful data analysis tools as well as available 
information in OSM. The representation of intersections as graphs allows to detect critical 
movements and the location of traffic signals from OSM provides an evaluation point to check 
the crossing times. The analysis of the crossing times -the basis of the methodology- provides 
crucial information like cycle length, phase time and a full signal timing schedule.  
 
The methodology presented here is scalable to any signalized intersection of the network. The 
computation of the cycle length of each movement is particularly stable since it is only a measure 
of the repetitiveness of the crossing times. On the other hand, the calculation of the phase times 
requires saturated conditions to be accurate. In the case of undersaturated conditions, the 
estimation of the green time is only a lower bound of the real phase time.  
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