Empty Vehicle Repositioning for Autonomous Mobilityon-Demand systems via Coverage Control

Pengbo Zhu¹, Isik Ilber Sirmatel², Giancarlo Ferrari Trecate¹, Nikolas Geroliminis¹ ¹Ecole Polytechnique Federale de Lausanne, Switzerland; ²Trakya University, Turkey.

1 Introduction

Imbalance in the spatial distribution of vehicles:

- Asymmetric origin and destination distributions of trips
- Non-uniform demand for rides in different districts

Goal: empty vehicle repositioning

 Relocating idle vehicles to the high-demand regions **Coverage Control problem:**

Every vehicle is responsible for covering a certain area

 $H(X,W) = \sum_{i=1}^{n} H(x_i, W_i) = \sum_{i=1}^{n} \int_{q \in W_i} -\|x_i - q\|^2 \varphi(q) dq$ where $\varphi(q)$ is the demand density function.

2 Methodology I: Coverage Control for Vehicle Repositioning (CVR)

Voronoi partition: $V_i (x_i) = \{ q \in \Omega : ||x_i - q|| \le ||x_i - q||, j \ne i \}$ 1500 2000 x-coordinate (m) (b) Final configuration (a) Demand density function S_i : covered area, x_i : position of idle AVs, V_i : Voronoi cell, *r*: coverage radius, $W_i = S_i \cap V_i$.

Proposition: The local maximum of *H* can be obtained when all x_i are located at centroids (centers of mass, C_{W_i}) of their respective Voronoi cells (W_i) , i.e., Centroidal Voronoi Configuration (CVC).

Control Law Formulation:

$$\dot{x_i} = u_i,$$

Let $u_i = -k_p(x_i - C_{W_i}), k_p > 0$, which steers the agent team to converge to CVC and guarantees the monotonic increasing of H.

3 Methodology II: Idle fleet sizing problem

Motivation:

When Supply > Demand, empty kilometers traveled caused by repositioning result in energy consumption.

A possible solution:

Select a subset of idle vehicles not to be relocated.

Two questions:

- 1) How many AVs should be relocated for different demand levels?
- **CVR-** α : [$n_{idle} \times \alpha$] are selected as 'active idle AVs'. where $\alpha = 0\%$, 20%, 40%, 60%, 80%, 100%.
- CVR-PI: a proportional-integral controller. The fleet size is determined on n_{idle} and the average waiting time in last 5 min.
- 2) Which ones should be chosen for not be relocated?

Considering the coverage objective, AVs with smallest value of $J(W_i, x_i)/J(V_i, x_i)$ will be selected as 'no-relocated' as they are around the high demand area, where

$$J(W_i, x_i) = \int_{q \in W_i} ||x_i - q||^2 \phi(q) dq.$$

$$J(V_i, x_i) = \int_{q \in V_i} ||x_i - q||^2 \phi(q) dq.$$

Automation

Swiss National

Science Foundation

4 Conclusion

Our proposed methods dynamically rebalance spatial distribution of vehicles to serve more trips with less waiting time.

By selecting a subset of idle AVs not be relocated, we can serve almost the same number of requests while reducing 51.8% empty travelling kilometers with CVR-PI. National Centre of Competence in Research

