
 

1 

 

Explaining cycling speed variation during a trip 

 
Hong Yan*1, Kees Maat2, Bert van Wee3 

 
1 PhD candidate, Transport and Logistics Group, Faculty Technology, Policy and Management, 

Delft University of Technology, the Netherlands 

2 Associate professor, Department of Transport & Planning, Faculty of Civil Engineering and 

Geosciences, Delft University of Technology, the Netherlands 

3 Professor, Transport and Logistics Group, Faculty Technology, Policy and Management, Delft 

University of Technology, the Netherlands 

 

 

SHORT SUMMARY 

 
Smooth cycling can improve the competitiveness of bicycles. Understanding cycling speed vari-

ation during a trip reveals the infrastructures or situations which promote or prevent smooth cy-

cling. However, research on this topic is still limited. The present study analyses speed variation 

using data in the Netherlands collected with GPS devices, which record cycling speed every five 

seconds. Multilevel mixed-effects models are estimated to test the influence of factors at cyclist, 

trip and tracking point levels. Results show that male cyclists and people who prefer a high speed 

have a higher average personal speed. Longer trips and trips made by electric bicycles and sport 

bicycles have a greater average trip speed. All point level variables explain cycling speed varia-

tions. Precipitation and tail wind increase cycling speed, while both uphill and downhill cycling 

is slow. Cycling in natural and industrial areas is fast. Intersections, turns and their adjacent roads 

decrease cycling speed, and their negative influence is stronger for high-speed trips. Bike tracks, 

bike streets and bike lanes increase speed. These findings benefit other research which needs 

cycling speed information, such as cycling safety, mode choice and bicycle accessibility. Further, 

these findings provide additional evidence for smooth cycling infrastructure construction. 
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1. INTRODUCTION 
 

Cycling is emerging in countries without a strong cycling tradition and growing in countries 

where the bicycle already has a solid position (Harms and Kansen, 2018). Governments promote 

cycling as it has societal and individual benefits, related to the environment, health, urban livea-

bility and mitigating traffic congestion, while also travel satisfaction is often higher than for other 

modes. However, maximum speeds of cycling are generally lower than for motorised transport, 

which means that cycling takes more time and distances covered are shorter. So, in terms of travel 

times, the bicycle is often losing out to other modes of transport, although short distances, partic-

ularly in urban areas, can sometimes be covered faster.  

 

Travel time is so important, because travel choices highly depend on it. In travel demand models, 

where travel is considered as a derived demand, travel time is assumed to involve a disutility that 

should be minimised (Small, 2012). In evaluation studies, the value of travel time savings refers 

to the benefits of faster travel (Small, 2012). In accessibility studies, travel time is an essential 

component as well (Geurs & Van Wee, 2004).  
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Applied to cycling, it can be assumed that a smooth flow and reduction of delays will make cy-

cling more competitive with other modes of transport (Hamilton and Wichman, 2018). On the 

other hand, higher speeds are also associated with accident risks (Schepers et al., 2017). Further-

more, cycling speeds and the variety of speeds into everyday use tend to increase with the adop-

tion of electric bicycles. Moreover, governments tend to build better infrastructure, such as bicy-

cle express paths which allow cyclists to increase their speeds. In order for cyclists to cycle as 

smoothly as possible and to allow them to maintain the speed levels they prefer, taking into ac-

count safety, it is necessary from a policy perspective to know to what extent speeds vary during 

trips. The average speed of cyclists says little about the obstacles they encounter on the route. The 

variation during the ride, however, provides insight into the locations where cyclists accelerate, 

slow down or maintain their speed. By linking speed and characteristics of geographical positions, 

insight is gained into the effect of differences in infrastructure, urbanisation and traffic density on 

speed. Such insight helps policy makers and road authorities to remove speed barriers. 

 

However, there is remarkably little attention paid to the speed component of cycling in the liter-

ature (Strauss and Miranda-Moreno, 2017). The research that does, typically measures speed at 

fixed locations (Opiela et al., 1980), and considers the average speed of an entire ride (Schantz, 

2017) or at best speeds per trip segment (EI-Geneidy et al., 2007). Understanding of the factors 

that influence the variation in cycling speed during the trip is still limited (Arnesen et al., 2019; 

Clarry et al., 2019).  

 

This paper departs from the premise that cycling speed varies during the ride. By measuring the 

speed continuously, we identify for each geographical position during the ride the factors that 

determine speed and consequently the variation in speed. For this purpose, GPS devices measure 

in a continuous sequence the so-called tracking points, i.e. the geo-positions and the correspond-

ing times. The factors that are assumed to influence along the way are infrastructural features and 

the built environment, as well as local wind and precipitation circumstances. However, speeds 

vary not only due to factors that occur during the trip, but are also influenced on higher scale 

levels. Some factors are the same for the entire trip, but differ between trips. This concerns situa-

tional circumstances, such as the weather and the amount of light. Also the bicycle type can differ 

between rides (even between rides by the same person). The cyclist represents the highest level, 

with differences in gender, age, health and preferences having an influence. By using a multi-

level approach, the independence of the observations, i.e. geopositions within trips, and of trips 

per respondent is controlled for, and the contribution of each level is identified. Data was collected 

in the Netherlands using a survey and recording by GPS-based devices. 

 

 

2. METHODOLOGY 
 

Cycling Data collection 
 

In this study, 64 respondents tracked their trips with a GPS device (Prime AT PLT) for seven 

consecutive days between the end of November 2020 and the start of January 2021 in some cities 

of the Netherlands. Participants were invited to fill out a survey, where socio-demographics, bi-

cycle ownership, cycling experience as well as preferences were asked. In addition, the cycling 

behaviour changes during the Covid-19 pandemic were asked. The GPS device recorded each 

five seconds a timestamp, its geographical position (latitude, longitude and altitude), moving di-

rection and speed. The data was continuously online collected. The bicycle trips were detected 

from row GPS data, and those trips short than 500 m were removed. Finally, there are there are 

58,979 tracking point from 508 trips made by 60 cyclists.  
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Variables 
 

Cycling speed is the most important variable in this study. Speed at every tracking point reported 

by GPS devices is adopted, after comparing different speed measures. We assume that cycling 

speed is influenced by cyclists’ characteristics, i.e. socio-demographics and preferences, charac-

teristics of the bicycle used for trips and trip attributes. Some spatial variated factors, including 

cycling infrastructures, land-use and slopes as well as temporal variated precipitation and wind 

are also expected to affect cycling speed. Besides, the nested-data structure is also considered in 

this study. As the conceptual model shows, tracking points are nested into trips which are further 

nested into different cyclists.  

 

 

Figure 1. Conceptual model 
 

Modelling method 
 

Three level mixed effect models were estimated to test the determinants of cycling speed varia-

tion. In existing studies, the simple linear regression model was most used statistical method, but 

it is less suitable for explaining cycling speed variation. One basic underlying assumption of the 

OLS regression is that observations should be independent. However, this is unrealistic in studies 

explaining cycling speed variation, especially for those with the segment or tracking point as the 

analysis unit. Cycling speed data are the nested data, whose lower level observations are nested 

within a higher level. Different trips of one cyclist have similar attributes, and segments or points 

belonging to a trip have some characteristics in the same. Compared to the linear regression 

model, the multilevel model can process the nested data and solve the dependence of observations 

(Clarry et al., 2019). In this study, tracking points are nested within trips which were furthermore 

nested within cyclists. Therefore, the three-level multilevel model is adopted. 

 

We first estimate a null model (model 1) to check the speed variance components at different 

levels, and the existence of cyclist and trip heterogeneity. Then cyclist-level and trip-level varia-

bles are added into Model 2 to see the explanation of cyclist and trip heterogeneity. Based on it, 

precipitation, wind, slope and land-use are added into Model 3, and land-use are replaced by 

bicycle infrastructures into Model 4. These two models mainly explain cycling speed variation 

during a trip. Land-use and bicycle infrastructures are separated because of the correlation. For 

example, intersections are denser in built up areas. Model 4 also introduces random slopes of 

some infrastructure variables across trips, i.e. before signalised, since the influence of these vari-

ables is expected to vary across trips. 

Cyclists 

 Socio-demographics 
 Preferences 

 
Trips 

 Bicycle characteristics 
 Trip attributes 

Tracking points 

 Infrastructure  
 Land-use 

 Precipitation and wind 

 Slopes 
 

Cycling speed 
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3. RESULTS 
 

Table 1 shows the model results. Because of space limitation, not all variables are present. The 

model is constructed stepwise, with the columns indicating the successive steps, starting with the 

null model (1) and then adding the additional variables (2-4). The stepwise construction of the 

model shows increasing model fits and decreasing remaining speed variance, where the effects of 

the variables are fairly stable, suggesting the robustness of these models. 

 

The null model shows variance components of the cyclist (7.86), trip (5.47) and tracking point 

(13.13) levels, showing that 29.7% and 20.7% of the total variance in cycling speed are due to 

between-cyclist differences and between-trip differences respectively, while within-trip differ-

ences account for about half of the total variance (49.6%). Substantial variances at the cyclist and 

trip levels also illustrate the existence of cyclist heterogeneity and trip heterogeneity. 

 

The influence of cyclist and trip level variables 
 

Cyclist characteristics influence the average personal speed, explaining the heterogeneity of cy-

clists. Among them, gender and two preferences significantly influence cycling speed. Men cycle 

about 1 km/h faster than women. Cyclists who prefer high speeds cycle faster, while those who 

prefer separated bicycle paths because of safety concerns tend to cycle slower. Many other char-

acteristics, such as income, education, household types, cycling experiences and other safety con-

cerns, were insignificant and excluded.  

 

Similarly, trip conditions influence the average trip speed. Normal electric bicycles are 3 km/h 

faster than city bicycles, and sport bicycles are 4 km/h faster. Longer trips tend to have a higher 

speed, but this effect is negligible. Dark conditions reduce speed by 0.6 km/h. Humidity slightly 

increases cycling speed, while temperature has no influence. 

 

The influence of point level variables 
 

All point level variables influence speed variation during a trip. The effects of most variables are 

significant and intuitive. Slope, precipitation and wind are included in both Model 3 and 4. Results 

show that cycling uphill is 1.6 km/h slower than on flat roads. Unexpectedly, cycling downhill 

also decreases speed by 1.2 km/h. Precipitation increases cycling speed. Cycling with tailwinds 

and side-winds, especially the strong tailwind, is faster, while headwinds were found indifferent. 

 

Land-use is added in Model 3, and bicycle infrastructures are added in Model 4. Compared to 

built-up areas, speeds are higher in natural and industrial areas, and lower in transport areas. Cy-

cling on bike streets, bike tracks and bike paths along roads is faster than on residential roads, 

which shows that bicycle facilities are also useful for speed. Cycling in pedestrian areas is slower, 

which makes sense. Unexpectedly, solitary bike paths do not influence cycling speed. Bridges 

and tunnels are negatively related to speed. All three kinds of intersections decrease cycling speed, 

and signalised intersections have the greatest effect, reducing cycling speed by 3.5 km/h. Cycling 

before intersections and turns is over 2 km/h slower, while it is only about 1 km/h slower after 

the intersections/turns.  

 

The random slope for the variable “before signalised” is considered at the trip level in Model 4. 

The covariance between the trip intercept and the trip slope of “before signalised” is -2.21, show-

ing that it tends to be smaller with the increase in the trip intercept. In other words, high-speed 

trips decelerate more before signalised intersections. This effect also applies to signalised inter-

sections, pedestrian areas and before/after intersections/turns, meaning their negative effects on 
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cycling speed are higher for trips with higher speeds. However, the effect of after turns and inter-

sections is lesser than before. 

 

Table 2: Model Results 
 

Variables Model 1 Model 2 Model 3 Model 4 
 Null 

model 

Controlled for 

cyclist and trip 

level variables 

Controlled 

for land-use 

Controlled 

for  infra-

structures 

Cyclist-level      

Age  0.012 0.007 0.004 

Female  -1.051* -0.913* -0.846* 

Health condition  0.421 0.383 0.342 

Preference separated path   -0.440* -0.483** -0.480** 

Preference high speed  1.245*** 1.170*** 1.176*** 

Trip-level      

Bicycles, city bike as ref.     

E-bikes  3.226*** 2.962*** 2.748*** 

Mountain/Racing bikes  4.171*** 3.885*** 4.001*** 

Point-level      

Slope, flat road as ref.     

Downhill   -1.197*** -1.100*** 

Uphill   -1.641*** -1.556*** 

Land-use, built up area as ref.     

Semi built up area   0.025  

Transport use area   -0.619***  

Industry use area   0.286***  

Nature area   0.518***  

Bike lane, residential road as ref.     

Pedestrian areas    -0.658*** 

Bike street    0.750*** 

Bike track    0.816*** 

Bike path along road    0.327*** 

Solitary bike path    0.025 

Before/after intersection, others as 

ref. 

    

After non-signalised    -0.570*** 

After signalised    -0.189 

Before non-signalised    -2.254*** 

Before signalised    -3.830*** 

Constants 15.237 7.143*** 8.338*** 9.057*** 

Random intercept      

Cyclist variance 7.864 2.109 1.909 1.755 

Trip variance 5.474 5.028 4.444 4.435 

Tracking point variance 13.132 13.132 12.562 11.559 

Random slope      

Cov.    -2.205 

Slope variance of before signalised    11.803 

* p < 0.1    **p < 0.05   ***p < 0.001 
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4. CONCLUSIONS 
 

This study departs from the assumption that cycling speed, together with distance determining 

travel time, greatly influences the choice of whether or not to cycle. Furthermore, we realise that 

speeds vary continuously during the trip. In order to allow cyclists to travel at their desired speed 

as much as possible, insight is needed into the factors that influence speed during the ride. To this 

end, multiple rides were recorded for multiple individuals using GPS in the Netherlands. Multi-

level mixed-effects models were estimated on cycling speed as a function of individual attributes, 

bicycle types, conditions during trips (e.g. night), and variation at the route (e.g. slope, land-use 

and infrastructure).  

 

Heterogeneity of cyclists and trips is related to the personal average speed and the trip average 

speed respectively. Male cyclists cycle faster than females. Cyclists who prefer a high speed cycle 

faster, while cyclists who prefer separated paths because of safety concerns have lower speeds. 

Trips made by electric bicycles and sport bicycles are faster. Longer trips are also related to high 

speeds. Cycling during the night is slow.  

 

Cycling speed variation during a trip is explained by tracking point level factors, including pre-

cipitation, wind, slope, land-use and infrastructures. Cycling during rainy situations and tailwinds 

is faster. Both negative and positive slopes reduce cycling speed, while natural and industrial 

areas increase cycling speed. Big speed reductions happen at the places where deceleration is 

involved, such as intersections, turns and their adjacent roads. In addition, the negative influence 

of these factors on cycling speed is greater for high-speed trips. Moreover, cycling speed increases 

on bike tracks, bike streets and bike paths along roads.  

 

Based on the results of the present study, better bicycle routes are an incentive for smooth cycling. 

First, any kind of on road bicycle facilities, such as bike paths, bike streets and bike tracks can 

support a high speed. Second, intersections and turns are the main speed barrier, and these speed 

limiting factors are more of a nuisance for faster cyclists. As average speeds increase, for instance 

due to electric bicycles, barriers are perceived as more of a hindrance. Third, cyclists who prefer 

high speed can cycle faster, while this can only be achieved in ideal situations. In cases with 

congestions or barriers, these faster cyclists are forced to keep the general speed. Therefore, 

providing more routes with bicycle facilities and without barriers is essential for smooth cycling. 
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