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SHORT SUMMARY 

 
Traffic assignment (TA) optimization is at the heart of many transportation planning and operation 

problems. For a reasonably sized network with high-dimensional decision variables, TA 

optimization quickly becomes intractable due to high computation time and a large number of 

function evaluations. Generally, TA models have cyclic dependencies among their components 

and hence, have no closed-form gradients, which is crucial for high dimensional optimization. 

This paper proposes an efficient TA gradient estimation technique called Iterative 

Backpropagation (IB) to solve this problem. IB exploits the iterative TA solution algorithms and 

generates the TA gradients while the TA model converges. IB neither requires solving any system 

of equations nor any additional functional evaluations irrespective of the problem dimension. In 

our experiments, IB gradients match the finite-difference gradients at machine precision. IB 

gradients are usable with any state-of-the-art gradient-based optimization algorithms and can be 

extended to a wide range of TA optimization problems.  
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1. INTRODUCTION 
 

Network optimization or network design with an embedded traffic assignment (TA) model is at 

the heart of transportation planning and operations. Many transportation problems incorporate 

traffic assignment models into their formulation to capture the effects of equilibrium route choice 

and road congestion (Lee et al., 2020; Yang & Bell, 1997). The goal is generally determining a 

particular set of control variables to achieve a specific desired outcome (Liu et al., 2017; Yang & 

Bell, 1997). Another problem involving TA optimization is calibration (Lee et al., 2020; Patwary 

et al., 2021). TA models often require a combination of many submodules and procedural steps, 

making them computationally expensive, lacking closed-form solution and gradient information. 

Optimization of such a model involving a large network and a large number of decision variables, 

thereby, quickly becomes intractable. This paper proposes an efficient gradient estimation method 

to solve high-dimensional optimization problems with an embedded TA model. We demonstrate 
the proposed algorithm in the context of origin-destination (OD) demand calibration. The 

approach, however, applies to a wide variety of network optimization or network design problems 

with an embedded TA model, opening up an efficient way to solve large-scale bi-level problems. 

 

Many techniques have been developed in the literature to solve bi-level problems, where the lower 

level solves the TA problem and the upper level optimizes the decision variables iteratively (Yang 

& Bell, 1997). For simulation-based TA optimization problems, general-purpose black-box 

algorithms, such as genetic algorithm (GA) (Chiappone et al., 2016),  simultaneous perturbation 

stochastic approximation (SPSA) (Oh et al., 2019), neural network (Otković et al., 2013), etc. 

have been developed. Some hybrid semi- black-box algorithms have also been proposed where a 

simplified traffic model is used to mimic the physical properties of the assignment model in a 
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trust region framework (Patwary et al., 2021; Zhang et al., 2017). In the context of OD estimation 

for static TA models, multiple gradient, sub-gradient and approximate gradient methods have been 

developed to solve the problem. Tobin and Friesz (1988) proposed a sensitivity analysis method 

for optimizing TA assignment models. However, this method requires less number of routes than 

the number of links (Patriksson, 2004) which does not hold for large-scale application. 

 

A pure gradient descent optimization technique is not bounded by such mathematical assumptions 

and can inherently incorporate the congestion effect of changing OD demand. However, due to 

cyclic dependency between different components, TA outputs does not have closed-form 

gradients. Gradient-based TA optimization generally avoids this cyclic dependency by assuming 

independence among TA components in the solution process (Spiess, 1990; Yang et al., 2001). 

Numerical gradients computation methods, on the other hand, require at least the same number 

of function evaluations as the problem dimension at each iteration of the optimization process, 

making them computationally prohibitive for high dimensional TA optimization.  

 

SPSA (Spall, 1992), is a very attractive approximate gradient-based large-scale optimization 

technique that approximates the gradient by simultaneously perturbing all the decision variables. 

Some exciting modifications have been proposed to increase the applicability of SPSA for large-

scale OD demand estimation in recent years (Lu et al., 2015; Oh et al., 2019). The successful use 

of SPSA demonstrates the necessity and potential of developing efficient gradient estimation 

techniques and pure gradient-based optimization algorithms. 

 

This paper proposes an efficient gradient estimation framework called Iterative Backpropagation 

(IB) for network optimization with an embedded TA model. IB takes advantage of the iterative 

TA solution algorithms (e.g., fixed point, method of successive average, gradient projection, 

Frank Wolf etc.) to simultaneously calculate the analytical gradients at the current evaluation 

while the assignment process converges. The method requires no additional TA function 

evaluations and can be parallelized, i.e., it scales well with high dimension. 

 

In this paper, section 2 develops the general framework of the IB algorithm for TA optimization 

problems. Section 3 then calculates and compares IB and finite-difference gradients for a small 

two-link network with respect to a single OD demand. Finally, section 4 concludes the paper.   

 

2. METHODOLOGY 
 

Problem Statement 
 

We define an optimization problem in equation (1) where 𝑔: ℝ𝑛 →  ℝ is an objective function that 

maps 𝜓 ∗∈ ℝ𝑛, the equilibrium output vector from a TA model to an objective value to be 

minimized. 𝜓 ∗ can consist of equilibrium link volumes, link travel times, transit vehicle exit and 

entry counts, travel times, transit waiting times, etc. 𝑛 is the dimension of 𝜓 ∗. 𝜃 ∈ ℝ𝑠 is the 

parameter vector to be optimized within the vector space Θ. 𝑠 is the dimension of the parameter 

vector to be optimized. 

𝑚𝑖𝑛θ𝑔(ψ ∗ (θ)); θ ∈ Θ (1) 

For an iterative gradient descent scheme, the update rule for iteration 𝑖 in the optimization process 

takes the following form. Here, β is the learning rate of the gradient descent process.   

θ𝑗+1 = θ𝑗 − β × ∇θ𝑔 (ψ ∗ (θ𝑗)) (2) 

Given the gradient vector ∇𝜃𝑔 (𝜓 ∗ (θ𝑗)) ∈ 𝑅𝑠×1 is known, the optimization process can take 

advantage of any sophisticated gradient-based optimization algorithms such as RMSProp (Hinton 
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et al., 2012) or ADAM (Kingma & Ba, 2015).  

 

Applying the chain rule for multivariate function derivative, the gradient ∇𝜃𝑔 (𝜓 ∗ (𝜃𝑗)) can be 

calculated using equation (3). Here, ∇𝜓𝑔 (𝜓 ∗ (𝜃𝑗)) is the ℝ𝑛×1 gradient vector of  

𝜕𝑔(𝜓∗(𝜃𝑗))

𝜕𝜓ℎ
;  ℎ = 1,2, …  𝑛 and  

𝜕𝜓∗(θ𝑗)

𝜕𝜃
 is the 𝑅𝑠×𝑛 Jacobian matrix consisting of  

𝜕ψ∗ℎ(θ𝑖)

𝜕𝜃𝑘
; ℎ =

 1, 2, 3 … . 𝑛 and 𝑘 =  1, 2, 3, … . . 𝑠. We use the superscript to denote the number of optimization 

iteration and the subscript to denote the element of a vector throughout the paper. 

∇θ𝑔 (ψ ∗ (θ𝑗)) =
∂ψ ∗ (θ𝑗)

∂θ
∇ψ𝑔 (ψ ∗ (θ𝑗)) (3) 

We calculate the Jacobian matrix 
𝜕𝜓∗(θ𝑗)

𝜕𝜃
 consisting of the partial derivative of the traffic 

assignment model output with respect to the decision variables using the iterative 

backpropagation method outlined in the following section.  
 

Iterative Backpropagation 

 

TA with fixed demand is to determine a route flow proportion for each route in each OD pair that 

are non-negative and satisfies some variations of Wardrop’s principle (Wardrop, 1952). Given a 

set of routes 𝑟 ∈ 𝑅 connecting a set of OD pairs 𝑜𝑑 ∈ 𝑂𝐷, the equilibrium TA conditions for 

∀𝑟 ∈ 𝑅, 𝑜𝑑 ∈ 𝑂𝐷 can be written in terms of route choice proportion 𝑤𝑟,𝑜𝑑 as shown in equation 

(4), which depends on the route costs 𝐸𝑜𝑑 = {𝜂𝑟,𝑜𝑑 : ∀𝑟 ∈ 𝑅𝑜𝑑}, which themselves are functions 

of the route flows 𝐹 = {𝑓𝑟,𝑜𝑑: ∀𝑟 ∈ 𝑅, 𝑜𝑑 ∈ 𝑂𝐷}.  𝑤𝑟,𝑜𝑑 here, can be derived based on the 

multinomial logit model generating the stochastic user equilibrium (SUE) route flows or 

deterministic assignment procedure generating the user equilibrium (UE) route flows.  

𝑓𝑟,𝑜𝑑 − 𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹))𝑞𝑜𝑑 = 0; 

𝐹 = {𝑓𝑟,𝑜𝑑: ∀𝑟 ∈ 𝑅, 𝑜𝑑 ∈ 𝑂𝐷}; 

𝐸 = {η𝑟,𝑜𝑑: ∀𝑟 ∈ 𝑅𝑜𝑑}; 

𝑓𝑟,𝑜𝑑, 𝑤𝑟,𝑜𝑑 ≥ 0  

(4) 

The iterative solution algorithms for TA problem solves the following sub problem at each 

iteration.  

𝑓𝑟,𝑜𝑑
𝑖+1 = 𝑓𝑟,𝑜𝑑

𝑖 + α × [𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝐹𝑖)) − 𝑓𝑟,𝑜𝑑
𝑖 ] ; ∀𝑟 ∈ 𝑅, 𝑜𝑑 ∈ 𝑂𝐷  (5) 

Here, 𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝐹𝑖)) is the approximation of the route flow 𝑓𝑟,𝑜𝑑 based on the set of route 

costs of the 𝑖𝑡ℎ iteration E𝑜𝑑(𝐹𝑖). At solution convergence, this approximation will become exact 

subject to the acceptable convergence tolerance. α is ideally a monotonically decreasing learning 

rate. The equilibrium traffic flow is achieved once the gap [𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝐹𝑖)) − 𝑓𝑟,𝑜𝑑
𝑖−1] 

coverges to zero. The process of calculating 𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝐹𝑖)), i.e., a set of auxiliary route 

flows, is also known as network loading. In the IB algorithm, we denote this step as the forward 

pass.  

 

Assuming the equilibrium route flow is achieved after the 𝐼𝑡ℎ iteration, the equilibrium route flow 

gradient ∇θ𝑓𝑟,𝑜𝑑
∗  with respect to the upper-level decision variable vector θ can be written in the 

following form.  
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∇θ𝑓 ∗𝑟,𝑜𝑑= ∇θ𝑓𝑟,𝑜𝑑
𝐼 = ∇θ𝑓𝑟,𝑜𝑑

𝐼−1 + α × ∇θ[𝑞𝑜𝑑𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹𝐼−1)) − ∇𝜃𝑓𝑟,𝑜𝑑
𝐼−1]; ∀𝑟 ∈ 𝑅, od ∈ 𝑂D  (6) 

The flow gradient 𝛻𝜃[𝑞𝑜𝑑𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹𝐼−1))] can be calculated using the chain rule of 

differentiation, as shown in equation (7).  

∇θ[𝑞𝑜𝑑 × 𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹𝐼−1))] = ∇θ𝑞𝑜𝑑 × 𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹𝐼−1)) + 𝑞𝑜𝑑 ×

∇𝐸𝑜𝑑
𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹𝐼−1)) ×

∂𝐸𝑜𝑑(𝐹𝐼−1)

∂θ
  

(7) 

𝜕𝐸𝑜𝑑

𝜕𝜃
 in equation (7) is the Jacobian matrix containing the route cost gradient ∇𝜃𝜂𝑟,𝑜𝑑 =

𝜕𝜂𝑟,𝑜𝑑

𝜕𝜃
  at 

each row. We can again apply the chain rule to calculate the route cost gradient ∇𝜃𝜂𝑟,𝑜𝑑 as shown 

in the equation below.  

∇θη𝑟,𝑜𝑑(𝐹𝐼−1) = ∇𝐹η𝑟,𝑜𝑑(𝐹𝐼−1) ×
∂𝐹𝐼−1

∂θ
 (8) 

∂𝐹𝐼−1

∂θ
 is the route flow gradient Jacobian from the previous iteration; i.e., iteration 𝐼 − 1 contains 

the route flow gradient ∇θ𝑓𝑟,𝑜𝑑
𝐼−1 at each row. So, using equations (6)-(8), we can calculate the 

approximate route flow gradients of a specific iteration as a function of the route flow gradients 

of the previous iteration. In the IB algorithm, we define this step as gradient backpropagation. 

The TA conditions and the gradient formulations shown in equations (4)-(8) can be extended to 

link based formulation for a static TA and BPR based link performance function by adding 

equations (9) - (10) to the formulation. 

𝑥𝑙 = ∑ ∑ 𝑓𝑟,𝑜𝑑

𝑟∈𝑅𝑜𝑑𝑜𝑑∈𝑂𝐷

δ𝑟,𝑙 (9) 

∇θ𝑥𝑙 = ∑ ∑ ∇θ

𝑟∈𝑅𝑜𝑑𝑜𝑑∈𝑂𝐷

𝑓𝑟,𝑜𝑑δ𝑟,𝑙 (10) 

The flow and flow gradient update rules in equations (6) - (7) are written in the link level as 

equations (11) - (12). 

𝑥𝑙
𝐼 = 𝑥𝑙

𝐼−1 + α × [ ∑ ∑ 𝑞𝑜𝑑𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝑋𝐼−1))δ𝑟,𝑙

𝑟∈𝑅𝑜𝑑𝑜𝑑∈𝑂𝐷

– 𝑥𝑙
𝐼−1] (11) 

 

∇θ𝑥𝑙
∗ = ∇θ𝑥𝑙

𝐼 = ∇θ𝑥𝑙
𝐼−1 + 𝛼 × [ ∑ ∑ ∇θ𝑞𝑜𝑑𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝑋𝐼−1))𝛿𝑟,𝑙

𝑟∈𝑅𝑜𝑑𝑜𝑑∈𝑂𝐷

– ∇θ𝑥𝑙
𝐼−1] (12) 

We now formally define the IB algorithm, as shown in the following pseudocode. 

 

Algorithm 1: IB Pseudocode 

Step 1: Initialize the flow and gradient components (𝑓𝑟,𝑜𝑑/𝑥𝑙 = 0, 
∂ 𝑓𝑟,𝑜𝑑   

∂ θ
=  𝟘; ∀𝑟 ∈ 𝑅, 𝑜𝑑 ∈

𝑂𝐷). Set counter 𝑖 =  0. 
Step 2: Perform the network loading based on the current route flow 𝐹𝑖, and calculate the 

approximate route flow 𝑓𝑟,𝑜𝑑
′ = 𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝐹𝑖)) or in case of the link-based 

formulation, link flow  𝑥𝑙
′ =  ∑ ∑ 𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝑋𝑖)) δ𝑟,𝑙𝑟∈𝑅𝑜𝑑𝑜𝑑∈𝑂𝐷 . 

Step 3: Perform the gradient backpropagation using equations (7) - (8) and calculate approximate 

route flow gradients 𝛻𝜃𝑓𝑟,𝑜𝑑
′ = 𝛻𝜃 [𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝐹𝑖))], or in case of link based 
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formulation, link flow gradients  ∇θ𝑥′𝑙 = ∑ ∑ ∇θ [𝑞𝑜𝑑𝑤𝑟,𝑜𝑑 (𝐸𝑜𝑑(𝑋𝑖))]𝑟∈𝑅𝑜𝑑𝑜𝑑∈𝑂𝐷 ×

δ𝑟,𝑙. 

Step 4: Update the route flow using equation (5) or link flow using equation (11). 

Step 5: Update the route flow gradient using equation (6) or link flow gradient using equation 

(12). 

Step 6: Go back to step 2 until the TA algorithm converges.  

Step 7: Stop. 

 

Figure 1: Traditional TA solution algorithm (left) versus IB algorithm (right) 

IB does not require solving any system of equations. It directly calculates the gradient by 

substituting the required information from the network loading step into equations (6) - (12). 

These equations can be coded in a matrix form, enabling vector computation instruction set of 

modern computing hardware to calculate the maximum number of gradients in parallel. The 

original TA solution remains usable as IB does not affect the original TA equilibrium convergence. 

Figure 1 shows the comparison between traditional iterative TA solution algorithms and IB.  

 

In the above formulation, besides calculating flow gradients, IB implicitly calculates the gradients 

of additional TA components, such as choice model and flow model gradient, while calculating  

𝛻𝐸𝑜𝑑
𝑤𝑟,𝑜𝑑(𝐸𝑜𝑑(𝐹𝐼−1)) and ∇𝐹  η𝑟,𝑜𝑑(𝐹𝐼−1) in equations (7) and (8). Moreover, the gradients of 

other non-essential components, such as smart card entry or exit counts, tolls if any, can be derived 

from the route flow gradients.  This makes IB versatile and a powerful tool to compute general 

TA equilibrium output gradients 
𝜕𝜓∗(θ𝑗)

𝜕𝜃
, as discussed in the previous section. 

 

3. APPLICATION OF IB 
 

In this section, we demonstrate the IB gradient computation with respect to OD demand in a small 

network depicted in Figure 2. The network has two links 𝐿1 and 𝐿2, both with a free flow travel 

time of 10 and capacities of 50 and 70, respectively. These two links connect 1 OD pair with 

demand 𝑞. We use the BPR function as the link performance function. The objective is to compute 

the gradient of TA equilibrium output components, i.e., link/route flow gradient and route choice 

gradient with respect to the OD demand 𝑞 at two levels: 𝑞 =  10 and 𝑞 = 100 using IB. We 

demonstrate IB in both SUE and UE TA problems. While calculating iteration specific route 
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flows, SUE uses the logit model and UE uses the ‘all or nothing’ loading procedure in each 

iteration. We shall compare and validate the gradients calculated by IB with those by the finite 

difference technique. 

 
Figure 2: Two link network 

 

Results and Discussion 

Table 1: TA solution for the two-link network 

   Demand  𝒙 ∗/𝒇 ∗ 𝒘 ∗ 𝒕 ∗ 

SUE 

𝑞 = 10 
9.933 0.9933 10.002 

0.067 0.0067 15 

𝑞 = 100 
65.629 0.6563 14.453 

34.371 0.3437 15.099 

UE 

𝑞 = 10 
10 1 10.002 

0 0 15 

𝑞 = 100 
67.8165 0.6782 15.0764 

32.1835 0.3218 15.0764 

 

Table 1 shows the TA solution for SUE and UE for both congested and uncongested scenarios. 

The gradients are all identical except 
𝑑𝑡2

∗

𝑑𝑞
  at 𝑞 = 10 where the IB gradient produces a value of 

5.71E-13 whereas the FD produces a value of 0 (as shaded in Table 2). This happens because the 

supposed change in 𝑡2 at 𝑞 = 10 for a 1E-08 change in demand should have been 5.71E-21 which 

is below the machine precision of 1E-16 of MATLAB. So, the FD method missed the change and 

reported a gradient of 0.  

 

Table 2: IB vs. FD TA equilibrium gradients for the two-link network 

  
Demand 𝛁𝒒𝒙 ∗/𝒇 ∗ 𝑭𝑫 𝛁𝒒𝒙 ∗/𝒇 ∗ 𝛁𝒒𝒘 ∗ 𝑭𝑫 𝛁𝒒𝒘 ∗ 𝛁𝒒𝒕 ∗ 𝑭𝑫 𝛁𝒒𝒕 ∗ 

SUE 

𝑞 = 10 
0.9933 0.9933 -6.23E-06 -6.23E-06 9.35E-04 9.35E-04 

0.0067 0.0067 6.23E-06 6.23E-06 5.71E-13 0.00E+00 

𝑞 = 100 
0.1242 0.1242 -0.0053 -0.0053 0.0338 0.0338 

0.8758 0.8758 0.0053 0.0053 0.0101 0.0101 

UE 

𝑞 = 10 
1 1 0 0 9.60E-04 9.60E-04 

0 0 0 0 0.00E+00 0 

𝑞 = 100 
0.6782 0.6782 0 0 0.2031 0.2031 

0.3218 0.3218 0 0 0.0031 0.0031 
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Computation Speed Comparison for High Dimensional Case 

 

Figure 3: Gradient backpropagation calculation time (HK Network) 

Figure 3 shows the computation time for IB paired TA network loading instances in the Hong 

Kong multimodal network against the problem dimension. Results indicate that for a TA 

assignment with 3s of network loading time, one IB gradient backpropagation step takes at most 

50 sec for a problem dimension of 7000. Given FD requires 𝑛 + 1 function evaluation, it should 

take (7000 + 1) × 3 = 21003 sec. So, the IB gradient estimation technique is approximately 

21003/50 ≈ 420 times faster than FD for TA gradient estimation. 

 

4. CONCLUSIONS 
 

This paper proposed an efficient gradient estimation framework, referred to as iterative 

backpropagation (IB), for high dimensional TA embedded optimization problem. It inserts a 

gradient backpropagation step along with the traditional network loading step of the TA solution 

algorithm for calculating the gradients. IB does not require solving for any system of equations 

or additional function evaluation irrespective of the problem dimension. We tested out IB for a 

small two links network where IB matched finite difference gradients at machine precision. 

Numerical analysis showed that in a large multimodal network and high dimensional problem, IB 

was 420 times faster than traditional FD gradient estimation technique. The framework is generic 

and applicable to many high dimensional TA embedded optimization problems.  
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