
Penalized denoising of vehicle trajectories collected by a swarm of drones

Georg Anagnostopoulos*1, Emmanouil Barmpounakis1, and Nikolas Geroliminis1

1Urban Transport Systems Laboratory, EPFL, Switzerland

SHORT SUMMARY

Vehicle trajectory datasets collected in urban traffic environments with drones pose unique chal-
lenges in terms of denoising due to extensive visual restrictions, perspective distortions and human-
induced errors. This article taps into the unexplored potential of penalties in the context of vehicle
trajectory reconstruction with the example of the massive pNEUMA dataset. We contribute to the
literature by shifting the focus of denoising from smoothing to anomaly detection. Specifically, we
distinguish between stationary and non-stationary errors and argue that the latter accounts for the
largest part of the noise. We propose a re-purposing of the Butterworth filter for the detection of
anomalous events and enforce spatial autocorrelation constraints on the errors with functional data
analysis. The calibration of our reconstruction makes further use of penalties and is inspired by
the theory of human-machine interaction. Our method can be used for quantifying autocorrelated
errors or for identifying network segments that are devoid of errors.
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1. INTRODUCTION

Traffic monitoring of urban environments with drones is challenging in terms of denoising due
to extensive visual restrictions, perspective distortions and human-induced errors. The collected
vehicle trajectory datasets lack a reliable ground truth, so a penalized (or regularized) approach
in denoising becomes especially relevant. However, the potential of penalties in the context of
vehicle trajectory reconstruction remains unexplored. As a case study for our reconstruction,
we will use the pNEUMA dataset, a collection of naturalistic vehicle trajectories captured by a
swarm of drones hovering over the dense urban environment of Athens, Greece. The design of
the experiment to collect this massive dataset along with suggested applications was introduced in
(Barmpounakis & Geroliminis, 2020).

Despite the fact that a bird-eye view, compared to an angle view, decreases the hidden points
between vehicles to a minimum and the advances in computer vision provide opportunities for
higher quality of trajectory extraction, vehicle trajectories in the pNEUMA dataset contain errors
that require a careful consideration. Many researchers in the field of intelligent transport systems
(ITS) have attempted to recover or reconstruct noise-free vehicle trajectories, such as (Montanino
& Punzo, 2015; Coifman & Li, 2017; Dong et al., 2021). Simply, there exist two kinds of noise:
white noise and anomalies. White noise is assumed to be independently and identically distributed
with constant variance and zero mean. The above assumptions do not apply to anomalies that can
be described as asymmetric, abrupt events. Anomalies are also different from outliers, extreme but
feasible values of an underlying phenomenon, for example a harsh acceleration or a harsh braking
event (Vlahogianni & Barmpounakis, 2017). Outliers are valuable and should be preserved along
the process. Some authors, such as (Montanino & Punzo, 2015), do not draw this distinction and
refer to all undesirable values as outliers.
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2. METHODOLOGY

Our methodology builds on the distinction between stationary and non-stationary, autocorrelated
errors and consists of 5 parts: filter design, functional data analysis of the non-stationary errors,
theory-driven validation in absence of a ground truth (penalizing false negatives), calibration with
penalties (penalizing false positives) and formulation of the objective function for determining the
optimal parameters of our reconstruction.

Design of the Butterworth filter

Anomaly detection typically involves using some kind of filter. A classical choice in the field
of digital signal processing (DSP), is the Butterworth filter. Surprisingly, despite the excellent
denoising properties of this filter, in the literature of vehicle trajectory reconstruction it is used
just as a smoothing technique (Montanino & Punzo, 2015; Dong et al., 2021), not for anomaly
detection. Specifically, (Montanino & Punzo, 2015) remove outliers by imposing predetermined
thresholds on longitudinal acceleration and (Dong et al., 2021) detect anomalies with a more
involved rule-based system.

More formally, the magnitude squared frequency response of an Nth order Butterworth filter with
cut-off frequency Ωc is given by the following equation (Taylor, 2011):

|H(Ω)|2 = 1
1+ ε2(Ω/Ωc)2N , (1)

where Ω is the frequency and H(Ω) denotes the transfer function. The parameter ε controls
the magnitude at the critical frequency Ωc. Usually, we set ε = 1. The order N represents the
aggressiveness of the filter. In the limit as N approaches infinity, we obtain the ideal “brick wall
response”. In practice, low orders are used. For example (Montanino & Punzo, 2015) set N = 1
and (Dong et al., 2021) set N = 2. A very nice property of this filter is having “maximally flat
magnitude” in the pass band (Haslwanter, 2021). In contrast to moving averages, which tend to
oscillate in the low frequencies, the Butterworth filter suppresses only high frequencies, Figure 1.

Figure 1: Butterworth filter specification.

After different filter parameterizations, here we will demonstrate how a single Butterworth filter
specification with N = 2 and Ωc = 0.9 Hz can be used for detecting anomalies in two trajectory
metrics: speed v and azimuth θ , which are noisy realizations of an unobserved ground truth. As
one might suspect, there is a catch: we are not primarily interested in the filtered metrics ṽ, θ̃ as
such, but in the absolute differences |v− ṽ|, |θ − θ̃ |. For ease of notation and regardless of the
metric considered, we will refer to such absolute differences as some error function y, which is
specific to each vehicle. At its current form, y cannot be used for anomaly detection. Now the
problem is that, strictly speaking, y is not even a function, but rather a set of (noisy) observations
y j at n consecutive timestamps t j. Therefore, our objective is to find a smooth analytical expression
for y in continuous time.
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Functional data analysis of non-stationary errors

The motivation of having a smooth error function comes from the assumption that neighboring
anomalous observations should be strongly and positively autocorrelated. To reiterate, anomalies
are not anything like white noise: they are “non-stationary, autocorrelated errors” (J. O. Ramsay
& Silverman, 2005). Of course, smoothing of the errors does not need to be an analytical fit and
can be also achieved with Gaussian or exponential kernels. The power of the analytical approach
is that it maintains most of the original drift without overfitting the data. This process can be fully
automatic without depending on sensitive parameters such as various bandwidths. On the other
hand, fitting non-stationary error functions can be challenging. Fortunately, there is a whole branch
in statistics called functional data analysis (FDA) (J. O. Ramsay & Silverman, 2005; J. Ramsay,
Hooker, & Graves, 2009) that provides us with the mathematical tools required for such problems.
FDA has found applications in different scientific fields such as climatology, biology and finance.

To start with, we assume an error model y j = x(t j) + ε j, where x(t j) is a continuous, smooth
analytical expression evaluated at time t j and ε j is some residual term. Our objective is to find
that function x(t), such that the residuals are minimized and the function is as smooth as possible.
In other words, we have a regularized functional regression. We further assume that this model
is additive and x(t) is constructed from a linear combination of K simpler basis functions φk(t),
such that x(t j) = ∑

K
k ckφk(t j). We point the reader to (Eilers & Marx, 1996) for details on these

functions. Then we can specify a least squares estimation problem

SSE(c) =
n

∑
j
[y j −

K

∑
k

ckφk(t j)]
2 =

n

∑
j
[y j −φ

′
(t j)c]2, (2)

where c is the vector of coefficients ck and φ
′
(t j) is the jth row of the n×K matrix Φ, where

Φ jk = φk(t j). Next, we measure the roughness of the function x(t) by introducing a penalty term,
the “integrated squared second derivative or total curvature” (J. Ramsay et al., 2009)

PEN2(x) =
∫
[D2x(t)]2dt, (3)

where the bounds of integration coincide with the start and end time of each trajectory (omitted
here). Then, we can formulate the final expression (J. Ramsay et al., 2009) to be minimized as

PENSSEλ (c) = SSE(c)+λPEN2(x), (4)

where λ is a hyperparameter that controls the effect of the penalty term. The higher the λ , the
smoother the result. If λ = 0, it means that there is no regularization. This parameter is chosen by
the “generalized cross-validation criterion” (J. Ramsay et al., 2009):

GCV(λ ) =

(
n

n−d f (λ )

)(
SSE

n−d f (λ )

)
. (5)

The degree of freedom of the fit d f (λ ) can be found if we define the “symmetric roughness penalty
matrix” R =

∫
φ(t)φ

′
(t)dt of order K and let d f (λ ) = trace

[
Φ(Φ

′
Φ+λR)−1Φ

′
]
. The number

of basis functions used is proportional to the duration of each trajectory, as in (Yang, Ozbay, Xie,
Yang, Zuo, & Sha, 2021; Yang, Ozbay, Xie, Yang, & Zuo, 2021).
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Penalizing false negatives

So far, we obtained error functions per trajectory for speed and azimuth. Clearly, we also need to
specify the respective thresholds of what is considered anomalous. Please note that thresholds are
set on the error functions xv,xθ and not directly on the metrics of interest v,θ . Let us assume for
now that such thresholds xt are known. If x > xt , the respective observations of interest are marked
as anomalous and are removed from the dataset. The missing values are then interpolated linearly.
Finally, we obtain anomaly-free speed v∗ and azimuth θ ∗.

It is known that the majority of authors validate trajectory reconstructions based on longitudinal
acceleration. Here, we will break away from this tradition and propose an alternative method
based on speed and lateral acceleration. Lateral acceleration is very important in urban settings
as it is related to phenomena of turning maneuvers and lane-changes. Therefore, we calculate
the noise-free longitudinal acceleration a∗lon = dv∗/dt and lateral acceleration a∗lat = v∗2dθ ∗/ds∗,
where s∗ =

∫
v∗dt. In absence of any ground truth, we will use insights gained from a study with

instrumented vehicles (Bosetti, Da Lio, & Saroldi, 2014). The authors make some very interesting
and strong arguments based on the theory of human-machine interaction and attempt to deduce its
governing laws. They propose a “modified Levinson criterion” (Bosetti et al., 2014) that sets the
feasible bounds on lateral acceleration as a function of speed, Figure 2. The “Bosetti criterion” is

aBosetti
lat =

a0√
(1− (v∗/v0)

2)2 +2(v∗/v0)
2
, (6)

where the intercept a0 = 5.22m/s2 and the inflection point v0 = 14.84m/s= 53.42km/h, according
to the original paper. These parameters fit well urban traffic, but are inadequate for highways.

Figure 2: Speed, longitudinal and lateral acceleration for congested traffic, as shown
by the histogram of average speed per trip. Color represents density of observations.

Every observation that is found outside of the feasible domain, as described by the Bosetti equa-
tion, is considered anomalous. This basically sets an upper bound for our reconstruction. Now
we just need to specify the lower bound. Notice how close we are to the feasible domain only by
removing anomalies and without even using smoothing.
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Penalizing false positives

In principle, the anomaly-free distribution, as described in the previous section, can shrink arbi-
trarily in absence of a regularization mechanism that penalizes false positives. To this end, we
introduce an elegant in its simplicity heuristic: a calibration point, as in Figure 3, is chosen such
that the expected anomaly count in its immediate vicinity is close to zero. The calibration point
is placed there where no visual restrictions or perspective distortions are expected. We set the
vicinity radius r = 3m. It is also worth mentioning that the selected location has been strategically
placed on the main arterial in order to control as much of the traffic as possible. Both speed and
azimuth anomalies are included in the count.

(a) Speed anomaly heatmap. The main arterial has few anomalous observations.

(b) Azimuth anomaly heatmap. Some anomalies are due to parking maneuvers.

Figure 3: Penalizing false positives with a calibration point.

For illustrative purposes, we discretize space in small enough bins and define the intensity as the
normalized anomaly count per bin, excluding static points. Both figures support our hypothesis of
spatial autocorrelation as the most noisy areas are parts of the network that the drone had limited
visibility. A less obvious finding is related to pronounced anomalies near the edges that can be
safely attributed to perspective distortions.
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Determining the optimal parameters

By now we have gained a qualitative understanding of the objective and we proceed to formulate
a two-dimensional optimization problem by minimizing the following loss function

L(xv
t ,x

θ
t ) =

M

∑
m
{|a∗lat(m)|−aBosetti

lat (m)}+Card{p|d(p,q)< r}, (7)

where xv
t ,x

θ
t are the speed and azimuth error thresholds, M is the total number of undetected

anomalous observations (false negatives) and the last term is the cardinality of the set of misclas-
sified points p that fall within a distance r from the calibration point q (false positives). This loss
function is the combination of one floating point term and one integer term. The two terms balance
because a strong decrease in false negatives will drastically increase the false positives and will
ultimately increase the value of the objective function. It turns out that, for the problem under
consideration, our objective function has a single, well defined global optimum (minimum) and it
is convex, Figure 4. Please be aware that this statement holds true for the particular filter specifi-
cation with Ωc = 0.9 Hz. Higher cut-off frequencies perform poorly and lower cut-off frequencies
produce multiple minima.

Figure 4: Evaluations of the objective function for different values of speed and
azimuth error thresholds.

The optimization is done by multi-threaded, direct evaluation on a 15× 15 grid and the search
ranges have been identified by inspection. Notice that the two thresholds differ by one order of
magnitude. Inside the optimum grid cell, polishing in the form of local search finds the exact
threshold parameters.
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3. RESULTS AND DISCUSSION

With the optimal parameters in place, we can quantify the errors in the dataset. These are sum-
marized in Table 1. We distinguish between contamination rates and anomaly rates. A trajectory
is contaminated if any of its observations is anomalous, Figure 5. Static points are excluded in
anomaly counts.

Table 1: Result of anomaly detection for speed and azimuth

Anomaly statistics
Error metric Speed Azimuth Both Union

Portion of contaminated vehicle trajectories. 19.62% 25.61% 11.85% 33.39%
Portion of anomalous data, excluding staypoints. 0.81% 0.93% 0.24% 1.5%

As mentioned in the beginning, we make a clear distinction between anomalies and white-noise.
Previous research has focused on the second type of errors with extensive use of smoothing. In
reality, most of the contribution to the noise comes from the first type of errors. Nevertheless,
the residual white-noise should be also treated. This is especially relevant for the accelerations
because errors are amplified by derivation, Figure 6.

Figure 5: Anomaly detection for 3 different trajectories of various vehicle types.

Figure 6: Anomaly detection and smoothing for the motorcycle trajectory.
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For the elimination of white-noise, we use a first order Savitzky-Golay (SG) filter with a window
length equal to the frame rate (25 fps). This is equivalent to a centralized moving average. Cen-
tralized moving averages are a good choice for offline data as they do not introduce delay effects,
(Haslwanter, 2021). The SG filter is applied on the anomaly-free data. From the level of a single
vehicle trajectory to the overall distribution of lateral and longitudinal accelerations in the dataset,
Figure 7, before and after reconstruction, we can see how our treatment reduces the noise without
introducing noticeable systematic oversmoothing.

Figure 7: Distribution of longitudinal and lateral accelerations before and after our
reconstruction. The respective interquantile ranges remain mostly intact.

At this point, we reiterate that the above distributions exclude static points, known also as stay-
points. This is very important and it has been recently shown by (Paipuri, Barmpounakis, Geroli-
minis, & Leclercq, 2021) that static and moving vehicles are completely different phenomena and
should be treated separately. The emergence of detailed data on urban traffic has triggered new
interest in the empirical study of this distinction.

On another note, some authors put emphasis on the importance of internal and/or external consis-
tency of vehicle trajectory reconstructions (Montanino & Punzo, 2015; Dong et al., 2021). This
idea is interesting, but not without significant shortcomings, see (Coifman & Li, 2017) for a de-
tailed criticism. We should add here, that especially the concept of external, or platoon consistency
fails to account for the spatial autocorrelation of the errors among neighboring trajectories.

4. CONCLUSIONS

In summary, we presented a novel detection method for speed and for azimuth anomalies. We
managed to recover, as faithfully as possible, the underlying distributions of longitudinal and
lateral accelerations for six different modes of transport without hand-crafted rules. Our method
can be used for quantifying autocorrelated errors or, inversely, for identifying network segments
that are devoid of errors and can thus be used directly for validation of traffic flow models or for
traffic safety analytics. In future research, we would like to exploit the denoised data for studying
the characteristics of lateral interactions in the urban environment with emphasis in motorcycles.
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