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SHORT SUMMARY

Ridesourcing businesses operate virtual marketplaces to which free-lancers supply labour and ve-
hicle capacity. A lack of central control over supply may increase the likelihood that socially
undesirable levels of supply are attained. Currently, it is largely unknown how co-evolutionary re-
lationships between decentralised supply and demand affect the ridesourcing market equilibrium.
To this end, we propose a day-to-day model that accounts for multiple decentralised processes
occurring on both sides of the market: (i) initial exposure to information about the platform, (ii)
a long-term registration decision, and (iii) daily platform utilisation decisions, subject to day-to-
day learning based on within-day matching outcomes. We construct a series of experiments to
investigate the effect of different pricing variables and the availability of travellers and workers on
ridesourcing system performance. Our results provide indications that regulating the commission
fee may be highly beneficial to travellers and drivers, while inducing only a marginal cost for the
platform.
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1. INTRODUCTION

In addition to constituting a new travel alternative, ridesourcing services generate flexible job
opportunities (Hall & Krueger, 2018; Chen et al., 2019; Ashkrof et al., 2020). The financial reward
for supplied labour is typically based on satisfied demand, rather than the number of hours worked.
Service providers such as Uber and DiDi profit from the platform business model in two ways: (i)
they are not required to pay for social securities associated with long-term labour contracts, and
(ii) they are not tied to labour contracts under changing circumstances, e.g. declining demand as a
result of a pandemic.

There are however also downsides associated with the decentralisation of the vehicle fleet. While
ridesourcing service providers have pricing instruments to attract drivers to the market, there is no
guarantee that desired supply levels are achieved. Especially in a market in which job opportunities
are abundant, it may be difficult to convince potential drivers to work for the platform, even when
anticipated earnings are high. Network effects in two-sided markets imply that a failure to attract
suppliers may lead to a negative feedback loop resulting in the collapse of the system. Contrarily,
the market may also end up being oversupplied. This may happen for example when job seekers
have few alternative labour opportunities and will drive for the platform even when the expected
payout is limited. While an oversupplied market resulting in short pick-up times is beneficial for
travellers and the platform, it is an example of the tragedy of the commons for drivers. It implies
that utility-maximising labour decisions of individual drivers result in a suboptimal total value
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derived from labour supplied in the market (de Ruijter et al., 2021). This can be defined as the
aggregated difference in what drivers earn and what they minimally require to work.

Clearly, there is uncertainty surrounding the market share that will be captured by ridesourcing
services, in relation to the earnings of drivers participating in these markets, and the level of
service offered to travellers. Considering that the social optimum in a two-sided market can be
different than in a one-sided market (Rochet & Tirole, 2003), we are interested in finding out under
which conditions ridesourcing services will yield the utmost societal value, taking into account
the perspectives of the platform, travellers and drivers. This requires accounting for the (positive)
cross-group network effects and (negative) intra-group competition effects that characterise the
two-sided market (Parker et al., 2016).

A common property of scientific works studying ridesourcing systems is that a static, i.e. an
equilibrium-based, model is applied to describe the two-sided market. There are however several
key dynamic processes in ridesourcing provision that cannot be captured using a static model.
First, according to the theory of innovation diffusion (Rogers, 1995), both sides of the market
need to be exposed to information about a platform before they can decide to make use of it.
When exposure to information is slow on at least one of the sides of the market, it may be difficult
to exploit network effects that are key to the scaling of these platforms. Second, a registration
decision needs to be made before the platform can be used. This is relevant when registration
induces substantial fixed costs, which is the case for drivers in the ridesourcing market. Besides
access to a vehicle, they may need to acquire insurance and/or a taxi licence to participate in the
market. Third, potential drivers’ participation decisions and travellers’ mode choice decisions
are influenced by previous experiences. Hence, day-to-day variations in earnings and level of
service may affect the equilibrium state towards which the market evolves. There are a few studies
representing the ridesourcing market using a dynamic model (Djavadian & Chow, 2017; Cachon
et al., 2017; Yu et al., 2020; de Ruijter et al., 2021), however, all of those have represented only a
single or a few of the previously mentioned dynamic processes.

We address this research gap by investigating the long-term co-evolution of supply and demand
in the two-sided ridesourcing market by means of representing sequential individual decisions
of drivers and travellers. Specifically, we propose an agent-based day-to-day model for rides-
ourcing demand and supply, consisting of (i) an information diffusion model, (ii) a platform
(de)registration model, (iii) a platform utilisation model and (iv) a learning model. The proposed
model integrates a within-day operational model for ride-hailing (Kucharski & Cats, 2020) to ac-
count for spatial path-dependent processes in the allocation of drivers to travellers. We then apply
the model to a case study representing a realistic urban network. We construct an experiment to
find how pricing policies, including ride fares and platform commission, influence the ridesourc-
ing market equilibrium. This allows investigating the societal implications of a profit-maximising
pricing strategy, and hence, the need to regulate pricing in the ridesourcing market. Moreover,
considering the presence of network effects in ridesourcing provision, we investigate how the
ridesourcing market equilibrium is affected by the number of potential suppliers and consumers.

2. METHODOLOGY

We develop a model representing the day-to-day behaviour of individual consumers and suppliers
in the two-sided ridesourcing market. Consumers in the markets are formalised as travellers with a
daily trip request, choosing a travel mode on a daily basis. Suppliers are interpreted as job seekers
deciding whether they want to work for the ridesourcing platform based on anticipated earnings.
A single platform agent matches ridesourcing requests to available drivers, charging a commission
on each transaction. A conceptual framework of the model is presented in Figure 1.
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Figure 1: Conceptual representation of the proposed simulation approach

Information diffusion

Assume a pool S = fs1; : : : ;sNg of N driver agents, which on a given day t is divided into a group
of registered drivers Sr

t , a group of informed yet unregistered agents Si
t , and a group of uninformed

agents Su
t , so that:

S = Sr
t [Si

t [Su
t (1)

We also assume a pool of K traveller agents C = fc1; : : : ;cKg. Each day, the pool can be subdivided
into a group of travellers previously informed about the ridesourcing service Cu

t and those that have
not yet been informed Cu

t :

C = Ci
t [Cu

t (2)
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Information about the existence of the platform is transmitted from informed drivers to uninformed
drivers at a rate ydrivers, and from informed travellers to uninformed travellers at a rate ytravellers.
These variables represent the multiplication of the average daily number of contacts of agents by
the probability that information is transmitted in a contact between an informed an uninformed
agent. The probability pinform

st that a random uninformed driver agent s 2 Su
t is informed about

the service on day t and the probability pinform
ct that a random uninformed traveller agent c 2Cu

t is
informed about the service on that day are then defined as:

pinform
st =

ydrivers � jSi
t [Sr

t j
N

(3)

pinform
ct =

ytravellers � jCi
t j

K
(4)

Registration

For travellers, registration does not induce a significant cost. This decision is therefore neglected
in the model. Job seekers make an occasional (de)registration decision based on the anticipated
earnings, labour opportunity costs and registration costs. We assume that the opportunity costs of
a day of work - in labour theory referred to as the reservation wage - are constant over time and
equal to Ws. Registration costs are included as a penalty B that needs to be deducted from the
anticipated daily earnings AIst . We formalise the registration decision with a binary random utility
model with parameter breg and error term ereg to account for other variables in the registration
decision. Job seekers have a probability g of making a (de)registration decision on a given day
t. Hence, the utilities and consequent probabilities of registering and deregistering / remaining
unregistered on day t are formulated as follows:

U regist
st = breg � (AIst �B)+ ereg (5)

Uderegist
st = breg �Ws + ereg (6)

pregist
st =

g � exp(U regist
st )

exp(U regist
st )+ exp(Uunregist

st )
(7)

pderegist
st = 1� pregist

st (8)

Platform utilisation

Drivers Registered drivers are faced with a working decision. We assume that driver agents
follow the neoclassical theory of labour supply (Chen & Sheldon, 2016; Angrist et al., 2017; Xu
et al., 2020), i.e. they are more likely to supply labour when earnings are high. We define the
anticipated earnings on day t by driver agent s 2 Sr

t as AIst . Similar to the registration decision, we
apply a random utility model to account for additional variables in the participation decision, such
as day-to-day variations in drivers’ reservation wage as a result of varying activity schedules. The
error term is defined as eptp and the choice model parameter as bptp. The utility of participating,
the utility of the alternative, and the resultant probability of participation on day t for driver s 2 Sr

t
are now formulated respectively as:

Uparticipate
st = bptp �AIst + eptp (9)

U idle
st = bptp �Ws + eptp (10)
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pparticipate
st =

exp(Uparticipate
st )

exp(Uparticipate
st )+ exp(U idle

st )
(11)

Travellers Each informed traveller agent c 2Ci
t makes a daily trip. Next to ridesourcing, the

agent can choose from a bike, private car and public transport alternative, i.e. the mode choice set
available to informed drivers is M = frs;bike;car;ptg. Travellers consider time and cost attributes
in choosing their travel mode, as well as alternative-specific preferences. A random utility model
with error term emode is applied to account for other variables in mode choice. Drivers may value
in-vehicle time IVTcm differently than (anticipated) waiting time AWTctm and vehicle access time
ATctm, i.e. there are two separate time parameters b IVT

m and b WT
m . TCctm is the travel cost asso-

ciated with the choice for mode m on day t, which has a weight of bTC in the utility function.
Alternative-specific preferences may vary across travellers in the population, hence we specify
ASCcm as traveller c’s alternative-specific constant for mode m. We assume that mode attributes
are valued equally by different travellers. We can now formulate the utility of different modes in
M for traveller c on day t, and the probability that those modes are chosen, as:

Umode
ctm = b

IVT
m � IVTctm +b

WT
m �AWTctm +b

AT
m �ATctm +bTC �TCctm +ASCcm + emode (12)

pmode
ctm =

exp(Umode
ctm )

åm2M exp(Umode
ctm )

(13)

Learning

We describe learning using a Markov process formulation. Consider a driver’s last earnings as
EIs;t�1 and a traveller’s last experienced waiting time as EWTc;t�1. kdriver and ktraveller respectively
represent the weight that drivers and travellers attribute to the last experience as opposed to all
previous experiences. ws;t�1 and wc;t�1 are binary variable indicating whether driver s and traveller
c have participated in the ridesourcing market on the previous day t�1. No learning takes place
when drivers / travellers did not participate on the previous day. The expected earnings of driver s
for day t and the anticipated waiting time of traveller c are now formulated as:

AIst = (1�kdriver �ws;t�1) �AIs;t�1 +kdriver �ws;t�1 �EIs;t�1 (14)

AWTct = (1�ktraveller �wc;t�1) �AWTc;t�1 +ktraveller �wc;t�1 �EWTc;t�1 (15)

Within-day operations

A within-day model for ride-hailing operations is adopted from the MaaSSim simulator for two-
sided mobility platforms (Kucharski & Cats, 2020). It is used to establish earnings of drivers and
waiting time and the rejection probability for ridesourcing travellers, including variability across
agents, based on the supply and demand on day t. The matching algorithm is a myopic one, i.e.
drivers are assigned to travellers based on the pick-up distance, immediately when there is at least
a single driver and a single request in the queue. We refer to the study of de Ruijter et al. (2021)
for more details about the within-day model.

Implementation

The multi-day simulation is terminated once the expected earnings of all drivers and expected
waiting time of all travellers has not changed more than j on five consecutive days. To reduce the
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computational complexity of the simulation, we filter out travellers with a below 5% probability to
choose ridesourcing when there is no waiting time, i.e. when AWTct = 0. Due to stochastic compo-
nents in information diffusion, platform registration and participation, we replicate the experiment
for statistical significance.

3. EXPERIMENTAL DESIGN

Set-up

We apply our simulation framework to a case study devised to mimic the City of Amsterdam, in
terms of the underlying road network, ridesourcing operations and characteristics of alternative
modes. Our case study represents roughly a 10% sample of the travel demand in Amsterdam, as
well as a 10% sample of an estimation for ridesourcing supply. In absolute terms, this results in K
equal to 75,000 and N to 1500.

Driver agents cannot make working hour decisions. If they decide to participate on a given day,
they will work the full eight hours in which the service is in operation. Drivers’ hourly opportunity
costs are drawn from a normal distribution, with mean e25 - based on the average income in the
Netherlands - and a standard deviation that corresponds to a Gini-coefficient of 0.35.

Traveller’s trips are generated based on a spatial distribution of origins and destinations, with
a minimum trip distance of 2 kilometres. The request time of rides is drawn from a uniform
distribution. Preferences related to modes are based on a study of travel behaviour in a Dutch
urban context (Geržinič et al., 2021).

Scenario design

When investigating the effect of the size of the pool of potential drivers N and the size of the pool
of travellers K, we assess 49 scenarios, in which the number of travellers ranges between 3,750
and 75,000, and the number of potential drivers between 125 to 2,500.

When evaluating the pricing strategy of the service provider, we test values between 0% and 55%
for commission rate p , in steps of 10%, and values between e0.50 and e3.00 for per-kilometre
fare fkm, in steps of e0.50.

Performance indicators

We formulate three surplus performance indicators, one for drivers, travellers and platform each.

An individual driver assigns value to the platform when it earns more than its opportunity costs.
Hence, the total driver surplus is defined as:

DSt = å
s2Sr

t

(EIs;t �Ws) �ws;t (16)

Travellers experience a welfare gain as a result of having an additional travel alternative. The
welfare gain can be measured by computing the difference in Logsums (De Jong et al., 2007) with
and without a ridesourcing alternative. The Logsums are formulated as:
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