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SHORT SUMMARY

First-order macroscopic traffic flow models in the form of partial differential equations are con-
ventionally solved using numerical schemes which are grid-dependent. We propose a kernel-based
method for learning solutions of first-order traffic flow models. The solution kernels are approx-
imated by Fourier Neural Operators - a variant of deep neural networks. Unlike the conventional
schemes, our method learns solutions to arbitrary initial and boundary conditions. This avoids
resolving the problem for every new instance of input conditions, thereby lowering the computa-
tional cost. We apply this method for learning traffic density solutions of the Lighthill-Witham-
Richards (LWR) traffic flow model. Numerical experiments to show the neural network solution’s
accuracy, grid-independence, robustness, and computational complexity are included.

Keywords: Deep Learning, Learning Traffic Dynamics, LWR Traffic Flow Model.

1. INTRODUCTION

Macroscopic descriptions of traffic flow assume a continuum fluid approximation and model the
evolution of aggregated variables such as traffic density, flow and speed over space and time.
Of several models available, the class of Lighthill-Witham-Richards (LWR) models (Lighthill &
Whitham, 1955; Richards, 1956) is widely used for modeling freeway and urban traffic. The
LWR-type models are non-linear hyperbolic partial differential equations (PDE), for which there
exist discontinuous solutions even with smooth initial densities (LeVeque, 1992; Whitham, 1999).

The LWR PDE is conventionally solved using first-order numerical schemes such as the Godunov
scheme (Lebacque, 1996) or the minimum supply-demand method (Daganzo, 1994). These meth-
ods discretize the space-time domain to computational cells and approximate an average PDE
solution in each cell. The size of these computational cells is restricted by the Courant-Friedrich-
Lewy (CFL) condition for numerical stability. The solutions are approximate and improve with
finer discretizations, i.e., close to the CFL limit. These methods fall under finite-volume based
schemes (Kessels, 2019). There also exist finite-difference based numerical schemes, where a vis-
cous form of LWR PDE is solved; viscosity is added for well-posedness. In this case, the solutions
are defined at discrete points in the computational domain. However, adding viscosity leads to un-
physical solutions. The computational cost for these numerical schemes is proportional to the grid
resolution.

Solution for general initial and boundary conditions, measurable over the space-time domain, and
that obtained at lower computational cost are still missing in the literature. To this end, we propose
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a methodology for learning LWR PDE solutions using deep learning (DL) models. DL-based
solutions for PDEs have attained recent attention due to their good generalization power and lower
computational cost (Raissi, Yazdani, & Karniadakis, 2020). Some recent studies include (Li et al.,
2020; Raissi, Perdikaris, & Karniadakis, 2019; Rudy, Brunton, Proctor, & Kutz, 2017). These
studies exploited the representation power of deep neural networks in approximating complex
dynamics. In the traffic flow literature, (Shi, Mo, Huang, Di, & Du, 2021) attempt to solve a
viscous form of LWR PDE using physics informed neural networks (Raissi et al., 2019). But,
the neural network model is trained to solve an instance of boundary condition and requires re-
training for new instance of boundary condition, which is computationally costly. We overcome
this limitation in our proposed solution.

Unlike classical numerical techniques, our solution method is data-driven. The idea is to write
the LWR PDE solution as an integral of kernel convolution with input conditions and then learn
the kernel function from data. In this study, we approximate the kernel function using a Fourier
Neural Operator (FNO) (Li et al., 2020) − a variant of deep neural networks, recently proposed
to solve general PDEs. The FNO model learns density solutions for arbitrary input conditions
and is grid resolution-invariant. The latter property allows one to train the solution kernels at a
lower grid resolution (which is computationally less expensive to generate) and test them at higher
grid resolution. Towards the end of the paper, we conduct experiments to assess the generaliza-
tion performance, resolution-invariance and computational aspects of the proposed neural network
solution.

In the remainder of the paper, we present the LWR model of traffic flow and formulate the Fourier
Neural Operator solution. Finally, solutions for a few selected problem instances is presented,
followed by a brief discussion on the features and limitations of the proposed method.

2. METHODOLOGY

LWR Traffic Flow Model

Consider a road section with boundaries x = xl and x = xu, and assume a finite time period t ∈
[0, tm]. Denote ρ(x, t) as the traffic density and q(x, t) as the traffic flow at (x, t). The LWR model
of traffic density dynamics is,

∂ρ(x, t)
∂ t

+
∂Q(ρ(x, t))

∂x
= 0; x ∈ [xl, xu], t ∈ [0, tm] (1)

ρ(xl, t) = ρ̄l(t), ρ(xu, t) = ρ̄u(t); t ∈ (0, tm]

ρ(x,0) = ρ̄0(x); x ∈ (xl, xu)

where Q(ρ(x, t)) = q(x, t) is the equilibrium flow-density relation, ρ̄0(x) is the initial density pro-
file, and ρ̄l(t), ρ̄u(t) are the prescribed boundary densities. The system (1) is an initial-boundary
valued problem. Next, we formulate an approximate solution for (1).

General Solution for Traffic Density

We assume that the traffic density ρ(x, t) is approximated using a convolutional integral as,

ρ(x, t) :=
∫

ξ=xl

ξ=xu

∫
τ=tm

τ=0
g(x−ξ , t − τ) f (ξ ,τ) dξ dτ = f ∗g (x, t). (2)

Here f is an input function that encodes the prescribed initial and boundary densities, g is an
unknown kernel function, and ∗ is the convolution operator. The solution (2) implies that the traffic
density at any point in the space-time plane is obtained by convolving the prescribed densities from
initial and boundary points using the kernel function g.

2



The solution (2) is motivated from the Green’s function for solving linear PDEs. For instance,
the general solution to the famous heat equation can be written in similar form as (2) with g as a
Gaussian kernel function (Evans, 2010). We assume there exist similar kernel function g for the
non-linear traffic density dynamics. We rewrite the convolutional integral in (2) using the Fourier
Transforms as follows:

ρ(x, t) = f ∗g (x, t)

= F−1 [F ( f ∗g)] (x, t)

= F−1 [F ( f )×G] (x, t),

(3)

where F (.) and F−1(.) are the Fourier Transform and the Inverse Fourier Transform, and G :=
F (g) is the kernel function defined in the Fourier space. The second equality in (3) is the Fourier
decomposition. The third equality in (3) follows from the convolution theorem. We formulate (3)
to a neural network model, which is described next.

Fourier Neural Operator (FNO) Model

The solution (3) is a global operation, i.e., the traffic density at (x, t) depends on the inputs from
whole space-time domain because of the Fourier decomposition. We add an additional local term
w f (x, t) to (3) to account for local correlations in traffic density. Together with a non-linear func-
tion σ(a) := max(0,a), we have the density at (x, t) as,

ρ(x, t) = σ
[
w× f +F−1(F ( f )×G

)]
(x, t) . (4)

Eq. (4) defines the traffic density solution at a single point (x, t). We rewrite (4) into a matrix form
to define the traffic density in the entire space-time domain,

ρ = σ

[
W ×ρ

(0)+F−1
(
F

(
ρ
(0)
)
×G

)]
, (5)

where D = {(x, t)}n×m is the discretized space-time domain, ρ := {ρ(x, t)}D ∈ Rn×m
[0,kjam]

is the

density matrix defined over D , and ρ(0) := f is the input matrix (prescribed initial and boundary
densities) over D .

In (5), W : Rn×m×k1 →Rn×m×k2 is a point-wise linear operator (one-dimensional convolution) that
maps feature vector from latent dimension k1 to k2. G ∈ Cn×m×k1×2 is the kernel parameter in
the Fourier space. F (ρ) : Rn×m×k1 → Cn×m×k2×2 is the two-dimensional Fourier Transform. The
non-linearity σ(.) is applied element-wise.

Eq. (5) is the parametric neural network approximation of the traffic density for (1), with trainable
parameters W and G. It takes an input matrix ρ(0) and outputs the traffic density over D . This
forms a single layer of the Fourier Neural Operator (FNO) model proposed in (Li et al., 2020). We
stack deep layers of (5) to improve generalization. The forward propagation for an L layer FNO
model is written as,

ρ
(l) = σ

[
W (l) ∗ρ

(l−1)+F−1
(
F

(
ρ
(l−1)

)
×G(l)

)]
, l = 0, . . . ,L, (6)

where W (l) and G(l) are the trainable parameters in each layer l. A 4-layer FNO model architecture
is shown in Figure 1.

The forward computation of (6) consist of two operations: a local convolution and a global Fourier
decomposition. This is depicted in Figure 1b. The first term extracts local information. The second
term extracts global information and handle sparse inputs by retaining low-order information from
the Fourier Transform. In other words, the high frequency Fourier coefficients are removed before
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(a) A 4-layer FNO model (b) A single FNO layer

Figure 1: Fourier Neural Operator model (Adapted from (Li et al., 2020)).

the Inverse Fourier Transform. This improves the generalization and avoids over-fitting, especially
to noisy data (Li et al., 2020).

The solution (6) is a numerically differentiable function. Hence, the parameters
{(

W (l),G(l)
)

:
l = 0, . . . ,L

}
can be optimized using gradient descent-based algorithms in a supervised learning

setting. Solution for a new instance of initial and boundary conditions (i.e., testing) is obtained
from a single forward pass of (6). The computational cost of (6) is limited by the 2-D Fourier
Transforms, which is of order O(n logm) with Fast Fourier Transform techniques.

The solution (6) is also grid resolution-invariant, i.e., measurable at all points in D , since we
approximate the density in the Fourier space. In the experiments, we investigate this by training
(6) at a lower grid resolution and testing at higher resolution.

3. RESULTS AND DISCUSSION

We empirically assess the quality of the FNO solution (6). The data for training (6) is gener-
ated from the Godunov numerical scheme (Kessels, 2019) with random input conditions: ini-
tial densities ρ0 ∼ U[0,100] (vehs/km), boundary fluxes, qin ∼ U[300,1500] (vehs/hr) and qout ∼
U[800,1500] (vehs/hr). For some instances, we set the outflow qout = 0 vehs/hr for an arbitrary
time period to replicate traffic signals.

Other parameters of the training data are: length of road section xu − xl = 1000 m, time period
tm = 600 secs, and cell size dimensions 20 m×1 sec. We assume the Greenshield’s fundamental
relation with jam density kjam = 120 vehs/km and free-flow speed vfree = 60 km/hr. The training
set consist of 7500+ samples. The number of layers of the FNO model (6) is l = 4. The testing
results are discussed below.

Learned Density Solution

The traffic density solutions for a few selected problem instances are shown in Figure 2 through
Figure 4. The first row shows the Godunov solution, the second row shows the FNO solution
(6), and the third row shows the density profiles at various time instants. The first two columns
represent examples of good approximation, and the third column shows an example of poor ap-
proximation. Overall, we observe an average approximation error of ≤ 5%, which is acceptable.

Figure 2 shows sample solutions from a validation dataset, i.e., for different input conditions
but with traffic scenarios similar to the training data. We see that the shockwaves separating
different regimes are correctly reconstructed. The model also accurately predicts the minor waves
emanating from the boundaries. The density profiles show a perfect approximation.
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Figure 2: Comparison of solutions for three problem instances from the validation
dataset (Val).
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Figure 3: Comparison of solutions for three problem instances from the testing
dataset - different initial conditions (Test-IC).

Figure 3 and Figure 4 shows sample solutions from a testing dataset, i.e., for the traffic scenarios
and input conditions not seen during training. Figure 3 present solutions for jump initial condi-
tions; the sub-figures are (a) rarefaction wave and (b) shockwave. The shockwave reconstruction is
accurate, but the rarefaction waves incur minor errors. An example with a bad rarefaction wave is
shown in sub-figure (c). The training data lack scenarios with rarefaction waves of longer periods.

Figure 4 present solutions for (a) two and (b) three traffic signals - not seen during training. The
queuing dynamics predicted by the FNO are accurate, except in a few test cases. An example of
a poor approximation is shown in the sub-figure (c), for which the FNO solution predicts queue
dissipation earlier than that in the true solution. Nevertheless, the average errors are within the
acceptable range, given that these scenarios are not observed in the training data.

The results presented above are promising. However, the test cases presented here to assess the
generalization error of the FNO model are far from complete. This is only a preliminary experi-
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Figure 4: Comparison of solutions for three problem instances from the testing
dataset - different boundary conditions (Test-BC).

ment, where the model is trained with a small set of random numerical solutions. More detailed
study incorporating diverse traffic scenarios can improve the generalization further.

Properties of Learned Solutions

We next discuss a few properties of the FNO solution (6).

Resolution Invariance. As mentioned before, the solution (6) is grid resolution-invariant, i.e.,
defined at all (x, t). This feature allows one to train models using solutions of coarser-resolution
and generalize them to finer grid resolutions. This is beneficial since obtaining coarser resolution
data is computationally cheaper. To study the limit of this resolution-invariance trade-off, we train
four models at lower grid resolutions and test them at their respective higher resolutions. The
average density error is summarized in Figure 5a.
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Figure 5: Properties of the learned density solution.

We observe that most test cases fall below the 7.5% error rate. The models perform well near the
resolutions they are trained on, but the performance declines at a finer resolution. The declination
rate depends on the train resolution. For instance, see the curve corresponding to 100 m× 5 sec
and 20 m×1 sec in Figure 5a. To conclude, assuming an acceptable error rate of ≤ 5%, the FNO
solution (6) can generalize to resolutions ×4 higher than the train resolution.
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Robustness. We further assess the FNO model (6) performance for noisy inputs, i.e., for weak
initial and boundary conditions. The density errors for different noise levels (white Gaussian) in
the boundary flows are shown in Figure 5b. We see a negligible increase in the density errors at
higher noise levels, implying that the FNO model can handle noisy inputs. This also affirms the
stability of the FNO solutions to input perturbations.

Computational time. An important, appealing feature of the proposed method is the computa-
tional complexity. As noted before, the prime computational bottleneck of the solution (6) is the
Fourier transform, which of order O(n logm), whereas the Godunov scheme is O(nm). We com-
pare the average compute time of (6) and the Godunov scheme in Figure 5c for different grid size.
Note that the FNO model is evaluated on a GPU (to exploit the parallel computation in the neural
network model), and the Godunov scheme is evaluated on a CPU. Clearly, the FNO model incurs a
negligible increase in the compute time for large problem sizes compared to the Godunov scheme.

Discussion on Learning-based Solution

The results show a promising direction for solving macroscopic traffic flow models using data-
driven learning-based techniques. How well these techniques compare against traditional numer-
ical solvers is still an open research question. This depends on the generalization performance
(out-of-sample error) of neural network models, and we assessed them empirically in this study.
The choice of training dataset also affects the generalization error and is an open research question.

A limitation of the proposed learning-based solution (6) is that it is agnostic to traffic physics. This
partly explains the poor approximation seen in a few test cases, for e.g., Figure 2c, Figure 3c and
Figure 4c. We expect the solution (6) to learn the governing physics from the training data, but
the physics is not guaranteed to hold while testing. The neural network solutions that explicitly
impose traffic physical constraints is important for reliable applications (Thodi, Khan, Jabari, &
Menendez, 2021a, 2021b), and is a potential future direction.

4. CONCLUSIONS

We propose a data-driven method for learning the traffic density solutions of the LWR traffic flow
model. We approximate the traffic density using the Fourier Neural Operator (FNO) model − a
variant of the deep neural network. The proposed method learns density solutions for arbitrary
initial and boundary conditions, unlike classical numerical schemes. This avoids the need for
resolving the problem for every new instance of input conditions, and thereby lower computational
cost.

Our empirical analysis has shown that the average approximation error of the FNO model is ≤
5%, which is within the acceptable range. The model trained with random input conditions can
sufficiently generalize to selected traffic scenarios. However, we have seen a few test cases where
the FNO model failed to produce the correct solution. Arbitrary generalization warrants a diverse
training dataset and an explicit constraining of physical dynamics. We also found that the FNO
solutions can be transferred to resolutions ×4 higher than the train resolution, robust to noisy
inputs and incur lower computational costs than traditional solvers.

The ultimate research question we try to answer here is whether we can learn traffic density dy-
namics using parametric models with a lower computational burden than numerical solvers. This
study shows promising results. Our efforts continue to build on this research direction with a more
explicit constraining of traffic physics on the learning model.
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