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Abstract 

The high energy consumption of urban rail transit (URT) in metropolitan areas becomes a hotspot 

problem due to the ever-increasing operation mileages and pressing agendas of carbon neutralization. The 

majority of energy-efficient timetabling studies focus on a single URT line and are insufficient for a URT 

network with multiple interlinked lines. We propose a general model framework including timetabling and 

passenger path choice behaviors to optimize energy consumption of a URT network under passenger travel 

time constraints. A novel dynamic programming and heuristic search method for determining travel time 

components are incorporated in an iterative solution algorithm to find energy-efficient timetables. The 

proposed model and solution algorithm are validated with a real-world URT network under various 

scenarios. 

 

Keywords: urban rail transit; energy-efficient timetabling; travel time; dynamic programming 

 

1. Introduction 

 

Urban rail transit (URT) is considered a low-carbon transport mode compared with other transport modes 

for serving the same passenger demand.  However, URT is a major contributor of energy consumption due 

to the ever-increasing operation mileages in metropolitan areas (see energy consumption of URT in Beijing, 

China in Fig. 1 for example). Thus, energy-efficiency of URT becomes a significant issue for the pressure 

of carbon neutralization initiative. 

Many studies have addressed the energy efficiency in the URT system in recent years. A number of 

studies focus on the speed profile optimization of one train running on a track between two stations (Howlett, 

1996; Albrecht et al., 2013; Scheepmaker et al., 2017). Comparatively, increasing studies concern the 

energy-efficient timetabling of multiple trains running a URT line (Gupta et al., 2016, Canca and Zarzo, 

2017, Wang and Goverde 2019, Xu et al., 2020, Yang et al., 2017 Wang et al., 2021). Energy-efficient 

timetabling aims to find the optimal timetable solution involving, for example, departure time, running time, 

and dwell time. Computationally, timetabling for a single URT line is an NP-hard problem (Cai and Goh, 

1994). With the assumption of fixed passenger arrival rates and the absence of path choices, a few studies 

(e.g., Yin et al., 2017) proposed mixed-integer linear programming (MILP) formulations for energy-

efficient timetabling of single URT lines. 

The energy-efficiency timetabling problem is even harder when considering passenger path choices in a 

URT network of multiple interconnected lines, which hold for most real-world URT systems. Huang et al. 
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Fig. 1. Energy consumption increases in Beijing during 2010-2020. 

 

(2021) pioneered an extension of energy-efficient timetabling from a single line to multiple lines in a URT 

network in bi-level programming framework with a simplified objective and model setup. First, the trade-

off between energy consumption and passenger travel time was overlooked in Huang et al., (2021), which 

would sacrifice travel time for energy consumption reduction. Second, with time-invariant passenger 

demand, the timetable was optimized periodically with the same headways for each line, which may restrict 

reduction in both energy consumption and passenger travel time. Third, the formulated bi-level 

programming did not explore the relationship between passenger travel time and energy consumption, and 

the heuristic solution algorithm was limited to a uniform timetable structure for computational 

considerations. 

In view of the limitations of Huang et al. (2021), this paper develops a more general model framework 

for energy-efficient timetabling for multiple lines with a nonuniform timetable structure. The time horizon 

of timetabling focuses on non-peak hours, during which energy-efficiency is a prioritized objective 

compared.  Accordingly, different behavioral mechanisms are incorporated to realistically capture 

passenger path choice behavior in the URT network. Based on the explored relationship between energy 

consumption and travel time, we suggest a novel solution algorithm of dynamic programming and iterative 

passenger flow adjustment to decompose the model framework. The proposed model framework and 

solution algorithm are validated with a real-world URT network under various scenarios. 

The remainder of this paper is organized as follows. Section 2 presents the problem description and 

modeling for the energy-efficient timetabling for a URT network. Section 3 discusses the solution algorithm 

for the proposed model framework. Section 4 presents a comprehensive case study in the URT system in 

the city of Xi’an (China) to verify the model and algorithm. Finally, Section 5 concludes the main 

contributions. 

 

2. Problem description and modeling 
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Energy-efficient timetabling aims to determine a timetable with the minimum energy consumption while 

satisfying the needs of passenger mobility. The URT trains of each line are operated from one terminal 

station to the other terminal station in the up or down direction. The essential difference between timetabling 

for single-line and multi-line resides in the consideration of transfer and path choice. With different 

passenger path choice behavior, the energy-efficient timetables may vary. For example, we use 𝜂 to denote 

the probability of a path being selected by the time-dependent passenger OD demand following a certain 

passenger path choice behavior. Given the speed profile of a track, the total weight of a train, including 

empty train mass and passenger loading weight, determines the energy consumption. Since passenger 

loading weight is the outcome of path choice, it is crucial that energy-efficient timetabling for a URT 

network should incorporate passenger path choice behavior. Hence, timetabling and passenger loading are 

two key aspects energy-efficient timetabling for a URT network that are coupled by passenger path choice 

behavior. 

Fig. 2 shows a typical URT network with two crossed lines to illustrate the timetable elements of a URT 

network. Suppose there are 𝑁𝑙 and 𝑁𝑙′  stations, 2𝑁𝑙 and 2𝑁𝑙′ platforms, and 2𝑁𝑙 − 2 and  2𝑁𝑙′ − 2 tracks 

(one track between two neighboring platforms) on line 𝑙 and 𝑙′, respectively. 

 

2.1 Passenger travel time in a URT 

 

For a parallel and nonuniform timetable, the time schedules of the first train are repeated cyclically with 

different headways of the ensuing trains on the same URT line. Denote the headway of train 𝑘 on line 𝑙 by 
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Fig. 2. Illustration of a URT network with two bidirectional lines. 
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ℎ𝑙𝑘; thus, ℎ𝑙𝑘 may differ across 𝑘. For the dwell time on platform 𝑝 (∀𝑝 ∈ 𝑃𝑙 , 𝑘 ∈  𝐾𝑙 , ∀ 𝑙 ∈ 𝐿) on line 𝑙, the 

relationship between arrival time 𝑎𝑙𝑘𝑝 and departure time 𝑑𝑙𝑘𝑝 is formulated as Eqs. (1)-(5). 

 

 𝑎𝑙𝑘𝑝 +𝑤𝑙𝑝 = 𝑑𝑙𝑘𝑝,          ∀𝑝 ∈ 𝑃𝑙 , 𝑘 ∈ [1, 𝐾𝑙], ∀𝑙 ∈ 𝐿 (1) 

 𝑤O ≤ 𝑤𝑙𝑝 ≤ 𝑤
E,              ∀𝑝 ∈ 𝑃𝑙 , ∀ 𝑙 ∈ 𝐿 (2) 

 𝑑𝑙𝑘𝑝 + 𝑣𝑙𝑝 = 𝑎𝑙𝑘𝑝,           ∀𝑝 ∈ 𝑃𝑙 , 𝑘 ∈  [1,𝐾𝑙], ∀𝑙 ∈ 𝐿 (3) 

 𝑑𝑙𝑘𝑝 + ℎ𝑙𝑘 = 𝑑𝑙𝑘𝑝,           ∀𝑝 ∈ 𝑃𝑙 , 𝑘 ∈  [1, 𝐾𝑙 − 1], ∀𝑙 ∈ 𝐿 (4) 

 ℎO ≤ ℎ𝑙𝑘 ≤ ℎ
E,                 ∀𝑘 ∈ 𝐾𝑙 , ∀𝑙 ∈ 𝐿 (5) 

 

where 𝐾𝑙 is train fleet on line 𝑙, and 𝑃𝑙 is set of platforms on line 𝑙. 

The travel time of a path may involve three parts, i.e., waiting at the starting platform, transfer, and in-

train (including running time on the tracks and dwell time on the platforms). A 0-1 variable 𝜉𝑢𝑟𝑘  is 

introduced to denote if a passenger can board a train as 

 

 
𝜉𝑢𝑟𝑘 = {

1        if  𝑑𝑙𝑘𝑝 < 𝑢 ≤ 𝑑𝑙𝑘𝑝, ∀𝑙 = �̅�1, 𝑝 = �̅�2, 𝑘 ∈ [1, 𝐾𝑙]

0,                                                                          otherwise
 (6) 

 

Eq. (6) can be linearized by introducing a large number 𝑀 as 

 

 
{
𝑑𝑙𝑘𝑝 − 𝑢 ≥ (𝜉𝑢𝑟𝑘 − 1)𝑀, ∀𝑙 = �̅�1, 𝑝 = �̅�2, 𝑘 ∈ [1, 𝐾𝑙]

𝑢 − 𝑑𝑙𝑘𝑝 > (𝜉𝑢𝑟𝑘 − 1)𝑀, ∀𝑙 = �̅�1, 𝑝 = �̅�2, 𝑘 ∈ [1, 𝐾𝑙]
 (7) 

 

Therefore, waiting time passengers arriving at time 𝑢, 𝑐𝑢𝑟
1 , is calculated by Eq. (8). 

 

 𝑐𝑢𝑟
1 = ∑ 𝜉𝑢𝑟𝑘(𝑑𝑙𝑘𝑝 − 𝑢)

𝑘∈[1,𝐾�̅�1]

 , ∀𝑝 = �̅�2 
(8) 

 

For passengers arriving at time 𝑢, in-train time of path 𝑟, 𝑐𝑢𝑟
2 , is formulated as 

 

 𝑐𝑢𝑟
2 =∑𝜆𝑟𝑙𝑝(𝑣𝑙𝑝 + 𝑤𝑙𝑝)

∀𝑙𝑝

 (9) 

 

where 𝜆𝑟𝑙𝑝 is an incidence variable: 𝜆𝑟𝑙𝑝 = 1 if platform 𝑝 of line 𝑙 belongs to path 𝑟; otherwise, 𝜆𝑟𝑙𝑝 = 0. 

Considering the uncrowded scenario, e.g. during non-peak hours, a transfer passenger will not wait or 

delay for the second connecting train, in which we argue energy-efficiency is more important. As shown in 

Fig. 3, the time window for passengers transferring from train 𝑘  on platform 𝑝  of line 𝑙  to train 𝑘′  on 

platform 𝑝′  of line 𝑙′  should satisfy 𝑑𝑙′𝑘′𝑝′ ≤ 𝑎𝑙𝑘𝑝 + 𝑓𝑙𝑙′𝑝𝑝′ ≤ 𝑑𝑙′𝑘′𝑝′  to reach synchronization, where 

𝑓𝑙𝑙′𝑝𝑝′  is the walking time during the transfer. 
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Fig. 3. An illustration of transfer synchronization. 

 

The transfer time of path 𝑟 for passengers arriving at time 𝑢, 𝑐𝑢𝑟
3 , can be presented as 

 

 𝑐𝑢𝑟
3 = 𝜎𝑢𝑟∑(𝑑𝑙′𝑘𝑖

′𝑝′ − 𝑎𝑙𝑘𝑖𝑝)

𝑖∈𝐼𝑟

  (10) 

The travel cost of path 𝑟, 𝑐𝑢𝑟, can be expressed as a function of the above three parts (𝑐𝑢𝑟
1 , 𝑐𝑢𝑟

2 , 𝑐𝑢𝑟
3 ) and 

passenger loading (𝑞𝑢𝑟) as 

 

 𝑐𝑢𝑟 = 𝐶(𝑐𝑢𝑟
1 , 𝑐𝑢𝑟

2 , 𝑐𝑢𝑟
3 , 𝑞𝑢𝑟) 

 
(11) 

2.2 Passenger flow loading 

In a parallel and nonuniform timetable, train index 𝑘 is dropped in the variable of passenger volume 𝑞𝑙𝑡 

on a track. For instance, in Fig. 7, for the same speed profile on a track, passengers who go through track 

2 → 3 either in train 1 or 2 have the same effects on the total energy consumption of this track during the 

planning period. Therefore, the total passenger volume 𝑞𝑙𝑡  of all operational trains determines the total 

energy consumption on this track. 

To capture the path choice behaviors on energy-efficient timetabling, we consider three passenger loading 

mechanisms, namely, all-or-nothing assignment, linear proportional assignment, one-off stochastic 

assignment below. Specifically, we use 𝜂𝑢𝑟 to denote the probability that path 𝑟 is selected by the time-

dependent passenger OD pair following a passenger path choice behavior. 

In the all-or-nothing assignment, 𝜂𝑢𝑟 is described as  

 

 
𝜂𝑢𝑟 = {

1,    𝑐𝑢𝑟 = min {𝑐𝑢𝑖|𝑖 ∈ 𝑅�̅�𝑟}

0,                            otherwise   
 

 

(12-1) 
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Fig. 4. Illustration for train number’s ignorance in passenger loading. 

 

In the linear proportional assignment, 𝜂𝑢𝑟 is described in a linear function as  

 

 

𝜂𝑢𝑟 =
𝑐𝑢𝑟

∑ 𝑐𝑢𝑖𝑖∈𝑅�̅�𝑟

 (12-2) 

 

In the stochastic assignment,  𝜂𝑢𝑟 for a one-ff assignment is formulated as  

 

 
𝜂𝑢𝑟 =

𝑒−𝛽𝑐𝑢𝑟

∑ 𝑒−𝛽𝑐𝑢𝑖𝑟∈𝑅�̅�𝑟

 (12-3) 

where 𝛽 is an estimated scaling parameter. 

The passenger volume of all trains on the track 𝑡 of line 𝑙 is 

 

 𝑞𝑙𝑡 = ∑ 𝑞𝑗𝑗′𝑢 ∙ 𝜂𝑢𝑟 ∙ 𝜆𝑟𝑙𝑡
∀𝑗𝑗′∈𝐽,𝑟∈𝑅𝑗𝑗′ ,𝑢∈𝑈

 
(12) 

 

Given average passenger weight 𝜏, the passenger load 𝑚𝑙,𝑡 on track 𝑡 is  

 

 𝑚𝑙𝑡 = 𝑞𝑙𝑡 ∙ 𝜏 (13) 
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Fig. 5. Speed profiles at different levels and energy consumption with different weights. 

 

2.3 Calculation of energy consumption 

 

As explained above, the energy consumption includes two parts: the energy for empty trains and the 

energy for the passenger loading (passenger weights). The relationship among passenger weight, running 

time and energy consumption is illustrated in Fig. 5. Running times and energy consumption satisfy 𝑣1 ≤

𝑣2 ≤ 𝑣3 and 𝑒11 ≥ 𝑒21 ≥ 𝑒31, respectively. For the same operation level, the heavier the train is, the more 

energy consumption is involved (i.e., 𝑒12 ≥ 𝑒11; 𝑒22 ≥ 𝑒21; 𝑒32 ≥ 𝑒31). 

 

For track 𝑡, only one level can be selected, expressed as Eq. (14). 

 

        ∑ 𝜃𝑙𝑡𝑔 = 1,

𝑔∈𝐺𝑙𝑡

  ∀ 𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇𝑙   (14) 

 

Then, the total energy consumption of the empty train of line 𝑙, 𝐸𝑙
1, equals to 

 

 𝐸𝑙
1 = 𝐾𝑙 ∙ ∑ ∑ 𝜃𝑙𝑡𝑔 ∙ 𝑒𝑙𝑡𝑔

0

𝑔 ∈ 𝐺𝑙𝑡𝑡∈𝑇𝑙

 (15) 

 

   Operation level, 𝑔 , will determine the running time, 𝑣𝑙,𝑡, which can be formulated as 

 

 𝑣𝑙𝑡 = ∑ 𝜃𝑙𝑡𝑔𝑣𝑙𝑡𝑔
0

𝑔∈𝐺𝑙𝑡

, ∀ 𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇𝑙   (16) 

 

The energy consumption caused by the passenger weight can be formulated as 
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 𝑒(𝑚𝑙𝑡, 𝑣𝑙𝑡) = ∑ 𝜃𝑙𝑡𝑔 ∙
𝑚𝑙𝑡

𝑚𝑙
0 ∙ 𝑒𝑙𝑡𝑔

0

𝑔∈𝐺𝑙𝑡

, ∀𝑙 ∈ 𝐿, ∀ 𝑡 ∈ 𝑇𝑙 (17) 

 

Eq. (17) consists of the product of binary variable 𝜃𝑙𝑡𝑔 and variable 
𝑚𝑙𝑡

𝑚𝑙
0 . Then, a group of constraints are 

introduced to linearize Eq. (17). 

 

 

{
 
 

 
 
𝑚𝑙𝑡

𝑚𝑙
0 −𝑀(1 − 𝜃𝑙𝑡𝑔) ≤ 𝜌𝑙𝑡𝑔 ≤

𝑚𝑙𝑡

𝑚𝑙
0 +𝑀(1 − 𝜃𝑙𝑡𝑔)

𝜌𝑙𝑡𝑔 ≤ 𝜃𝑙𝑡𝑔𝑀                                                                  

𝜌𝑙,𝑡,𝑔 ≥ 0                                                                           

∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇𝑙 , 𝑔 ∈  𝐺𝑙𝑡                                                 

 (18) 

   

Therefore, total energy caused by the passenger weight of line 𝑙, 𝐸𝑙
2, is presented as Eq. (19). 

 

 𝐸𝑙
2 = ∑ ∑ 𝜌𝑙𝑡𝑔 ∙ 𝑒𝑙𝑡𝑔

0

𝑔 ∈ 𝐺𝑙𝑡𝑡∈𝑇𝑙

 (19) 

 

Finally, we can get the total energy consumption of a URT network as follow 

 

 𝐸𝑙 = 𝐸𝑙
1 + 𝐸𝑙

2 = 𝑁𝑙 ∙ ∑ ∑ 𝜃𝑙𝑡𝑔 ∙ 𝑒𝑙𝑡𝑔
0

𝑔 ∈ 𝐺𝑙𝑡𝑡∈𝑇𝑙

+∑ ∑ 𝜌𝑙𝑡𝑔 ∙ 𝑒𝑙𝑡𝑔
0

𝑔 ∈ 𝐺𝑙𝑡𝑡∈𝑇𝑙

 (20) 
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Fig. 6. Flowchart of the solution algorithm. 
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3. Solution algorithm 

To simultaneously consider passenger total travel time and flow adjustment to the energy-efficient 

timetabling for the URT network, we propose a model framework including a passenger travel time 

constraint and passenger flow adjustment in Fig. 6. We find that once the running time (speed profile) on 

each track is given, the travel time is stable in a narrow range. Therefore, we replace the total travel time 

constraint as the total running time constraint and utilize a two-stage method to solve the timetable 

optimization. In the first state, we apply dynamic programming to find the optimal speed profile on each 

track under the allowed total running time constraint. In the second stage, the timetabling problem, given 

train running times, is formulated as MILP that can be solved by a MILP solver (e.g., Gurobi). Furthermore, 

passengers may adjust their path choices given a new timetable. Passenger flow adjustment is incorporated 

and demonstrated to converge after an iterative adjustment process. 
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Fig. 7. Energy changes on the adjacent speed profile level. 
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Fig. 8. Knapsack problem in tree type. 
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In the first step, we innovatively reformulate the relationship between energy consumption and running 

time as a knapsack problem in a tree structure. As shown in Fig. 7, between two adjacent speed profile 

levels, there is an energy consumption reduction ∆𝑒𝑖, which also corresponds to running time increment 

∆𝑣𝑖.This relationship can be regarded as an item in the knapsack problem. As shown in Fig. 8, in each track, 

there are in total 𝐺 speed levels that can be divided into 𝐺 − 1 items. We develop a dynamic programming, 

grouping the items and searching in the group rely on the dependency between the items to find the optimal 

running times. 

 

Time interval

Passenger arrival
O

Departure time

 

Fig. 9. Illustration of the combination of train departure and passenger arrival. 
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Since the MILP of timetabling optimization is repeated in the flow adjustment, we propose an 

approximation algorithm to effectively find a satisfactory solution. The passenger arrival is statistically 

discrete in a time interval ∆𝑢. As shown in Fig. 9, given the train fleet size, there are many order  
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Fig. 10. Equivalent passenger flow in the starting platform at each time interval. 

 

combinations between train departures and discrete passenger arrivals. Two steps are involved to find a 

satisfactory solution responsively. First, based on the heuristic rule that the train departure prefers to denser 

passenger arrivals, an order combination between train departure and discrete passenger arrival can be given. 

Second, we can utilize a solver to obtain the specific departure time. Since the decision variables are reduced 

to the departure time at the starting platform and dwell time, we should find the equivalent passenger flow 

in the starting platform at each time interval. 

 

 

4. Case study 

 

In this section, we demonstrate the effectiveness of the proposed model framework and solution 

algorithm with the URT network in the City of Xi’an (China), which covers 4 lines and 94 stations in service 

(Fig. 11). After running the solution algorithm for the three passenger behavioral mechanisms, the 

proportions of different times are shown in Fig. 12. It shows that the proportions of different times are stable 

when the elements (specifically, running time) of the timetable are given. 
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Fig. 11. The Xi’an URT network. 
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Fig. 12. The proportions of different times for different passenger behavioral mechanisms (%). 
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To further optimize the energy consumption, we conduct experiments with different allowed travel time 

constraints. As shown in Fig. 13(a)-(b), with a 20% increment of the allowed travel time, the energy and 

travel time can convergence after a dozen of passenger flow adjustment iterations. 

The relationship between optimal energy consumption and travel time can be seen in Fig. 14. Energy 

consumption reduction increases with increasing allowed travel time in Fig. 15(a). The ratio of energy 

consumption reduction to travel time increment decrease progressively in Fig. 15(b). When the travel time 

increment is around 10-15%, the ratio decrease becomes slow. Notice that when the allowed travel time 

increment is over 20%, the ratio of energy consumption reduction to travel time increment tends to be close 

to 1. This indicates a near equivalent exchange between energy consumption reduction and travel time. 

 

 

(a) The convergence of energy consumption. 

     

(b) The convergence of travel time. 

(ANS: shortest path assignment, LPS: linear proportional assignment,  

LS: one-off stochastic logit assignment) 
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Fig. 13. The convergence of different passenger behaviors. 

 

 

(a) Energy and travel time in different allowed 

travel time increments. 

 

(b) Normalization energy and travel time with 

different weights. 

Fig. 14. Energy and travel time relationship. 

 

 

(a) Energy consumption reduction varies from 

different allowed travel time increments. 

 
(b) The ratio of energy consumption reduction to 

travel time increment. 

Fig. 15. Relationship between energy consumption reduction and travel time increment. 

 

In Fig. 16, both the Energy consumption (EC) and Total Travel time (TT) curves turn upward with the 

rise of passenger demand. A slight increase in train fleet size causes more changes in energy consumption 

than those in travel time. It shows that more train fleet size consumes more energy but decreases the travel 

time in all proportional changes of passenger demand. This finding suggests that the operator may cut down 

up to two trains in the non-peak hours for more energy consumption reduction on the condition that the 

passenger travel times are only slightly affected. 
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Energy consumption: EC (Kwh), Total Travel time: TT (10^8s) 

Fig. 16. Influences passenger demand and train fleet on energy consumption and travel time. 

 

 

5. Conclusions 

This paper develops a general model framework including timetabling and passenger assignment 

considering passenger travel time constraints. Three types of passenger loading mechanisms are considered 

to capture the path choice behavior on energy-efficient timetabling. A dynamic programming and heuristic 

search process are incorporated in the solution algorithm to find a satisfactory solution. The efficiency and 

effectiveness of the model framework and solution algorithm are validated in the numerical experiments. 

The model can obtain a significant reduction in energy consumption with certain allowed travel time 

increments with the consideration of different passenger behavioral mechanisms. 
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