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SHORT SUMMARY 
 

We propose an area-wide Macroscopic Bottleneck Model for the Dutch Randstad area and use it 
to estimate a relation between dynamic aggregate inflow patterns and travel delays on highways. 
We find plausible parameter estimates, and a strong time variation of marginal external conges-
tion costs, which are €9.68 in the busiest 30 minutes and only €2.08 for the other 60 minutes in 
the busiest 90 minutes. 
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1. INTRODUCTION 
 
Recent years have witnessed an upsurge in studies that apply macroscopic, single-facility models 
to represent congestion in urban areas. Coined “Macroscopic Fundamental Diagram” (MFD) 
models, these models relate instantaneous measures of (space-)averaged speed and flow in urban 
areas, producing relations that mimic patterns found with the standard fundamental diagram that 
relates instantaneous and local measures of speed and density on a single facility; see, for exam-
ple, Geroliminis and Dagonzo (2007, 2008); Amirgholy and Gao (2017); and Mariotte et al. 
(2017). Closely related to these are economic dynamic equilibrium models that have become 
known as “bathtub models”, which describe traffic dynamics in a single-facility representing a 
downtown area, where traffic conditions are spatially homogeneous but vary in continuous time 
(Arnott, 2013; Fosgerau, 2015). 
 
These models have in common that the traffic volume measure used as the argument in the func-
tion describing speed is traffic flow observed within the facility modelled. Plausible as this may 
seem at first sight, an alternative measure becomes relevant when for traffic conditions close to 
the capacity of the facility, queues may be forming upstream of that facility, consisting of vehicles 
waiting to enter. Alternative model formulations can then seek to relate speeds or travel times to 
either traffic flow within the facility of interest, or to the arrival rate of vehicles at the back of the 
queue(s) (where “arrivals at the back of the queue” are somewhat confusingly also frequently 
referred to as “departures from home”). There is not such a thing as a single “correct” measure 
for vehicles per unit of time in such a setting: both measures are relevant. Their instantaneous 
values may however diverge considerably over clock time, and for many plausible model speci-
fications the flow inside the facility is endogenous, depending on the history of arrival rates of 
vehicles at the facility’s entrance(s). 
 
The temporal divergence of instantaneous flow inside the facility and arrival rate at its entrance 
causes an important divergence in the shape of the relation between vehicles per unit of time on 
the one hand, and travel times experienced on the other; an important basis for economic equilib-
rium models of congestion. Notably, as shown both for an empirical bottleneck and for a theoret-
ical dynamic model based on car-following theory in Verhoef (2001, 2003, 2005), for a facility 
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for which instantaneous and local traffic conditions are characterized by the conventional back-
ward-bending speed-flow relation, the relation between steady-state arrival rates and per-user 
travel times may still be strictly monotonously increasing, also when trips experience queuing at 
hypercongested speeds. 
 
These observations motivated us to develop an empirical macroscopic (single-facility) model of 
congestion for an urban area, in which the measure of volume is not the endogenous (on past 
inflows) space-averaged flow in the facility as in MFD and bathtub models, but rather the inflow 
into the facility. We coin our model a “Macroscopic Bottleneck”, to reflect an important similarity 
with the economic bottleneck model of traffic congestion as developed by Vickrey (1969) and 
Arnott, de Palma and Lindsey (1993): the use of the arrival rate of “new” users at the entrance as 
the argument in the dynamic travel time function. More specifically, we investigate how travel 
delays are determined by aggregate inflow over the peak as well as its dynamic pattern. This is 
the feauture of the model that makes it consistent with the bottleneck model. The findings are 
directly relevant for congestion policies, as these show how a change in overall traffic volume 
and its time pattern would affect congestion levels.  
 
We emphasize that the aggregate nature of the macroscopic model makes it also differ from the 
conventional bottleneck model. First, whereas the latter typically assumes a given constant ca-
pacity, the fact that the area we study has many, spatially dispersed exits, which in reality are used 
with different time profiles without any reason to expect that all exits should operate at capacity 
at the same clock times, makes this single-capacity measure having no direct equivalent in our 
model. Moreover, the true bottlenecks in the network we study will often be between points of 
entry and exit of the network, so that unlike the assumption in the standard bottleneck model, the 
exits are not the effective capacity constraint. As we can relate travel delays directly to inflow 
patterns only, we also do not need to specify exit capacity for our study, but it is important to 
highlight this difference with the standard bottleneck model: we do not assume nor specify any 
maximum capacity, even though we find a range of observations where our estimated inflow - 
travel delay relation becomes nearly vertical. A second distinction is that we need to account for 
phase differences between different points of inflows; put simply: closer to an economic centre, 
the moment of inflow that corresponds with an arrival at the most desirable arrival moment will 
be later than for a point of entry that is further away. This we tackle by allowing those moments 
to be different for the entry points we consider. Therefore, the parallels with the textbook bottle-
neck model are strong, notably in the focus on inflows rather than flows, but not complete. 
 
 
2. METHODOLOGY 
 
Study area and data 
We apply our model to the entire Dutch Randstad Area; the urbanized area in the western part of 
the country that contains the cities of Amsterdam, Rotterdam, The Hague and Utrecht. The facility 
considered consists of the highway network in that area and close to it, since we measure inflows 
into the highway system also for entries close to but outside the Randstad. The map in Figure 1 
reflects that the vast majority of highway travel delays on Dutch national highways occurs in the 
area considered. 
 
To estimate our model, we use data over the years 2019-2020, thus benefitting in empirical iden-
tification from the variation that COVID-19 lockdown measures have brought to commuting be-
haviour. 
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Aggregate travel delays are measured as the daily total vehicle hours lost on Dutch national high-
ways, as computed by Rijkswaterstaat, the public agency monitoring traffic conditions on Dutch 
national highways. We explain these daily travel delays from traffic volumes in the morning and 
afternoon peaks on weekdays. A strong correlation naturally exists between these (“what goes out 
to work in the morning, must come home in the evening”), which easily causes problems of col-
linearity in estimation. We therefore add up traffic volumes in the morning and afternoon peaks, 
but do include a daily measure for imbalance between the two (Imbalance), to reflect that non-
linearity of travel delay functions would imply that the same daily total distributed less evenly 
would lead to higher aggregate travel delays. 
 

 
 

Figure 1: Study area (inside blue dashed line) and travel delays on Dutch national 
highways (May 2019-April 2020) 

 
 

 
Figure 2: Yearly vehicle hours lost by clock time on Dutch national highways (pre 

COVID-19) 
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Figure 2 show the general time patterns of travel delays on Dutch highways in the years before 
COVID-19. On the basis of these patterns, we define as the total periods two six-hour blocks: 
06:00 – 12:00 in the morning, and 14:00 – 20:00 in the afternoon. For these time windows we use 
quarterly inflows into the highway network on 345 entry points inside the study area indicated 
with the blue dashed line in Figure 1. 
 
To capture the effect of the time differentiation of inflows on total travel delays we subdivide 
both the morning and evening period into three parts, following the labelling illustrated in Figure 
3. 
 

 
Figure 3: Labelling of time windows 

 
The “Total” periods consist, for each observation point, of the 6-hour windows just mentioned. 
Within each six-hour period, we define for each entry point individually, and for each working 
day and for morning and evening separately, the “Broad Peak” as the consecutive period of Y 
quarters that, among all possible Y-quarter consecutive periods, contains the highest number of 
vehicles passing. Similarly, we define the “Central Peak” as the busiest consecutive X quarters. 
The Central Peak thus falls within the Broad Peak; for now we have set X at 2 quarters, and Y at 
6 quarters. The part of the Broad Peak that is not in the Central Peak is called the “Shoulder” and 
it thus contains 4 quarters. The parts of the Total Period that are not in the Broad Peak is called 
the “Off-peak”. 
 
For each working day, we then add up, over all 345 entry points and over the morning and evening 
period, the numbers of trips in each of these periods just distinguished, to obtain our daily quantity 
measures: Central Peak Trips, Broad Peak Trips, Total Trips; as well as Shoulder Trips and Off-
peak Trips. This leads to traffic flows (per quarter of an hour) that are, on average (over the work-
ing days), 76 633 in the Central Peak; 62 542 in the Shoulder; and 44 539 in the Off-peak. In the 
empirical model we will use numbers of trips, so the product of these flows and the length of the 
period. Imbalance is defined over Total Trips as the absolute value of the difference between 
morning trips over daily trips and 0.5 (so that it increases when either morning or evening traffic 
is heavier).  
 
For our estimations we use as the dependent variable the travel delays per trip. This is to make 
the relations resemble average travel time functions, such as the BPR function. Since we only 
observe delays, free-flow travel times do not enter our model; which is fine given our purpose. 
The average delay is, for each working day, the total vehicle hours lost divided by the total number 
of trips. When a given individual travels in the morning and evening period and incurs average 
delays, (s)he will thus incur that average delay twice per day. 
 
Figure 4 (left panel) shows the scatter diagram relating daily total trips to this average delay. In 
other words, if indeed the vast majority of travel delays on Dutch highways is incurred by travelers 
entering via one of the 345 entry points we consider, they will suffer, per entry, from an average 
time loss that may range up to 0.1 hours or six minutes. The diagram displays a strong relation 
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between these two variables, which in itself is not too surprising, but reinforcing our faith in the 
plausibility of the assumption that our demarcation of the study area considered makes good 
sense. It is also clear that the relation is highly non-linear. For that reason, we will be using the 
natural logarithm of the average lost hours per user in our estimations. The resulting relation, in 
the right panel, indeed appears close to linear. 
 

 
 

Figure 4: Average per-user delays (left panel) and its natural logarithm (right 
panel) by Total Trips 

 
Finally, we use a number of covariates to capture the possible impact of external conditions on 
the relation between traffic volumes and travel delays, all defined such that we expect a positive 
coefficient. These are: 

• Darkness: 1 minus the share of the day that the sun is up; 
• Rain: the summation of millimeters of precipitation in three main weather stations in the 

area considered: Rotterdam, Schiphol Airport and De Bilt (in the more inland province 
of Utrecht); 

• Freeze: a dummy equaling 1 if the minimum temperature is below 1 degree Celcius. 
 
An observation, and a dot in Figure 4, is thus a single working day. The estimations in this ex-
tended abstract cover 11 months in the years 2019-2020: Jan, Feb, Mar, May, June; and Dec 2019. 
For final model estimates more months will be added. 
 
 
3. RESULTS AND DISCUSSION 
 
Table 1 presents the estimation results, including some robustness checks. The latter are needed 
especially also because there is a strong correlation between traffic volumes in the different sub-
periods. The robustness checks confirm the main findings from the preferred model (for which 5 
outliers with a standardized residual exceeding 2.5 have been removed compared to the model in 
the second column). 
 
The impact of an additional vehicle in the Central Peak is around 5 times as large as the point 
estimate for vehicles in the Shoulder. The latter is not even statistically significant, suggesting 
that only vehicles entering in the busiest 30 minutes are by far most decisive for total travel delays. 
The number of Off-peak trips is also statistically insignificant, and even has the wrong sign in the 
preferred model. The coefficient for the Central Peak trips is by far the most robust in our sensi-
tivity checks, confirming these conclusions. The increase in parameter estimate and statistical 
significance in the robustness checks for Shoulder and Off-peak Trips confirms the correlation 
with Central Peak Trips. Collinearity affects the efficiency but not the unbiasedness of parameter 
estimates, so that the parameters in the preferred model represent our point estimates for Shoulder 
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and Off-peak trips. The covariates have the expected sign, but are not statistically significant (at 
the 0.05 level). 
 

Table 1: Estimation Results  
 

 Preferred 
model 

Preferred 
model with 

outliers 

Robustness 
check 

Central Peak 

Robustness 
check 

Shoulder 

Robustness 
check 

Off-peak 
Intercept -12.05 

(2,76 E-91) 
-12.12 
(2.77 E-82) 

-12.22 
(3.05 E-89) 

-12.21 
(4.45 E-88) 

-11.91 
(1.17 E-68) 

Darkness 0.116 
(0.698) 

0.106 
(0.764) 

0.200 
(0.548) 

0.114 
(0.736) 

1.122 
(0.004) 

Freeze 0.158 
(0.073) 

0.189 
(0.0700) 

0.195 
(0.057) 

0.217 
(0.037) 

0.270 
(0.025) 

Rain 0.00153 
(0.102) 

0.00165 
(0.136) 

0.00169 
(0.123) 

0.00147 
(0.186) 

0.00211 
(0.109) 

Imbalance 7.922 
(1.95 E-07) 

7.313 
(3.53 E-05) 

7.406 
(6.70 E-06) 

8.521 
(6.04 E-07) 

8.055 
(0.00011) 

CentralPeakTrips 1.946 E-05 
(0.037) 

1.898 E-05 
(0.086) 

2.561 E-05 
(1.93 E-59) 

  

ShoulderTrips 4,182 E-06 
(0.521) 

5.586 E-06 
(0.468) 

 1.568 E-0.5 
(6.04 E-07) 

 

OffPeakTrips -2,146 E-07 
(0.694) 

-5.064 E-07 
(0.426) 

  4.38 E-06 
(2.05 E-41) 

      
R2 0.805 0.765 0.765 0.760 0.662 
Obs 231 236 236 236 236 

 
P-value between brackets 
 
Using the point estimates from our preferred model, we can construct marginal external cost func-
tions for Central Peak Trips (CPT), and for Shoulder Peak Trips (ST). These are shown in Figure 
5. We assume a value of time of 10 Euro/hr, and express the MEC as the cost imposed on all other 
travelers, in the Total Period, from an additional vehicle in the period considered. It thus also tells 
us by how much travel cost for all other drivers change if we move one vehicle from the one 
period to the other. Not surprisingly, the marginal external cost is much higher in the Central 
Peak. It may reach values as high as €30 for the busiest days in our data, and obtains at the sample 
average a value of €9.68. For Shoulder Trips, the MEC at the sample average is €2.08. 
 

 
 
Figure 5: Marginal external cost for Central Peak Trips (left panel) and Shoulder 

Trips (right panel) 
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We emphasize that these should not be misinterpreted as optimal access tolls, even though the 
interpretation is close to it. One caveat is that first-best tolls are equal to marginal external costs 
in the optimum. If a central peak toll would reduce Central Peak trips to 90% (80%) of the sample 
average, the marginal external cost drops to 5.25 Euro (2.82 Euro). Second, the macroscopic na-
ture of our model equalizes all drivers in all respects. In reality, an individual’s marginal external 
cost from an entry depends at least on the place of entry and exit, ignoring other sources of heter-
ogeneity. The second-best uniform access toll will be a weighted average of the resulting distri-
bution of marginal external costs, and is likely different from the values we now show, even 
though the order of magnitude will be indicative. 
 
 
4. CONCLUSION 
 
We propose an area-wide Macroscopic Bottleneck Model for the Dutch Randstad area and use it 
to estimate a relation between dynamic aggregate inflow patterns and travel delays. We find plau-
sible parameter estimates, judged by their relative sizes and by the absolute values of marginal 
external costs. We find a strong time variation of marginal external congestion costs, which are 
€9.68 in the busiest 30 minutes and only €2.08 for the other 60 minutes in the busiest 90 minutes. 
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