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SHORT SUMMARY 

 
Using Automated Fare Collection (AFC) data for public transport analyses has received much 

research interest recently, including for estimation of passenger preferences through route choice 

models. However, an important problem persists since AFC data only includes information about 

the trip within the public transport system, i.e. stop-to-stop. Not knowing the full trip might lead 

to estimation bias, especially when estimating route choice models using only the chosen stops. 

This paper highlights this problem by estimating route choice models based on traditional travel 

survey data and replicated AFC data. In addition, we propose an improved method in which 

pseudo origin (destination) points in close vicinity of the actually chosen origin (destination) stops 

are randomly generated, thus allowing pseudo access and egress to be incorporated. The method 

notably improves parameter estimates of the route choice model compared to estimation assuming 

AFC stop-to-stop data. Finally, further improvements to the model are presented.  

 

Keywords: AFC data ; Discrete choice modelling ; Estimation bias ; Public transport ; Route 

choice modelling ; Smart card data. 

 

 

1. INTRODUCTION 
 

Revealing transport route choice behaviour and preferences among passengers in public transport 

systems is an important base for evaluating strategies to improve attractiveness of public 

transport. Such analyses require detailed information on the full trip performed by travellers from 

their point of origin to their final destination. Traditionally, such analyses have been performed 

using detailed travel survey data, e.g. (Nielsen et al. 2021; Anderson, Nielsen, and Prato 2017; 

Berggren et al. 2021; Bovy and Hoogendoorn-Lanser 2005). However, such datasets are costly 

and limited wrt. sample size. Recently, more focus has therefore been on using automatically 

collected data from smart card-based automated fare collection systems (AFC). Such data are 

increasingly used within public transport planning and modelling (Pelletier, Trépanier, and 

Morency 2011), also for route choice analyses, e.g. (Arriagada et al. 2022; Jánošíkova, Slavík, 

and Koháni 2014; Nassir, Hickman, and Ma 2019; Raveau et al. 2014; Shelat et al. 2019; Zhao et 

al. 2017). However, one important drawback of using AFC data for route choice behaviour per-

sists in all these studies, namely the lack of knowledge on the full journey since AFC data only 

includes trip segments within the public transport system. Hence, the data lacks information on 

the actual origin and destination, i.e. the access and egress segments of the journey. Not explicitly 

considering this might introduce bias in the estimation of route choice preferences. An example 

is when passengers have two options for their first (or last) segment of a trip and can choose to 

either i) take a bus to the train station, or ii) walk/cycle/drive to the station. If choosing i) then 

both options (bus and walk/cycle/drive as access to train station) will be available in the choice 

set for estimating the route choice, whereas if choosing ii) then the choice set will not include 
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option i), since the trip started at the train station according to the AFC data. More specifically, 

this will introduce biases to the estimates of the in-vehicle times for the various public transport 

modes where the value of in-vehicle time for bus might be under-estimated. 

 

This study contributes to existing literature within transport route choice in two important aspects. 

First, by highlighting the potential biases obtained when using AFC data for estimating route 

choice models in multimodal public transport systems. Second, by proposing a method for esti-

mating route choice models based on AFC data, which reduces estimation bias.  

 

 

2. METHODOLOGY 
 

For estimating behavioural preferences from transport route choice a traditional two-stage esti-

mation process is applied. This involves i) choice set generation of relevant alternatives to the 

actual observed choices (CSG), and ii) route choice model estimation.  

 

Choice set generation 
 

The difference between using AFC data and traditional travel survey data lies in the first step. 

Most previous studies using AFC for route choice analysis have simply generated alternative 

choice sets based on the revealed stop pairs chosen by the traveller, i.e. points of tap-in and tap-

out of public transport, and thus neglected potential access (egress) travel between the chosen 

stop and the actual origin (destination), as well as possible alternatives at nearby stops in the 

vicinity of the origin (destination) stop. This study instead suggests to explicitly consider that the 

point of origin (destination) is not the chosen stop, but rather a point some distance away from 

the chosen stop. As this point is not known when using AFC data, we propose to simulate random 

points within a certain distance of the chosen stop, denoted the sampling distance, e.g. within a 

1,000 meter radius, which is illustrated in Figure 1. These points are used for calculating pseudo 

access (egress) distances (and travel times) to stops in the choice set (and not only the observed 

stop). In addition, we suggest to include stops within a certain distance of the chosen stop, denoted 

the choice set distance threshold (CSDT). This will ensure relevant alternatives in the choice set 

using other lines than the actually chosen line.  

  
Figure 1: Illustration of the generation of random points (100 draws) in a circle 

around the actually chosen stop (left) and the corresponding histogram of dis-

tances to the center (right) 



3 

 

Model estimation 
 

The utility function for alternative j in the full choice set Jq for individual q is given by: 

 

 𝑈𝑗𝑞 = 𝑉𝑗𝑞 + 𝜀𝑗𝑞 (1) 

 

 𝑉𝑗𝑞 = 𝐶𝑗 + 𝛽𝑗
𝑍 ∙ 𝑍𝑗𝑞 (2) 

 

, where Ujq is the utility of alternative j for individual q, Vjq is the systematic utility, εjq is a typical 

i.i.d. Extreme Value (EV) type I error term. Cj is the alternative specific constant for alternative 

j, Zjq is a vector of level-of-service characteristics of alternative j for individual q, and ßj
Z its 

corresponding vector of coefficients. For the level-of-service characteristics we include mode-

specific in-vehicle times, walking times and waiting times at transfers as well as a per-transfer 

penalty term, hidden waiting time, and finally the (pseudo) access and egress times. While the 

parameter estimates of the (pseudo) access and egress travel times will not be correct, it is hy-

pothesised that the implementation of these variables in the utility function will reduce bias of the 

estimates of the remaining parameters compared to neglecting these completed. 

 

The model estimation was performed using Monte Carlo simulation in PandasBiogeme using 100 

draws (Bierlaire 2020). 

 

 

3. DATA AND CASE STUDY 
 

The methodology was tested on case study data from the Greater Copenhagen area consisting of 

a total of 4,810 revealed preference multimodal public transport trips from the Danish travel sur-

vey (Christiansen and Baescu 2021). This consisted of 2,553 commuting trips and 2,257 leisure 

trips. This data contains information about the true origin and destination for each trip, thus the 

access and egress can be derived precisely. The data was also used in previous studies, which this 

study builds upon (Anderson, Nielsen, and Prato 2017; Nielsen et al. 2021).  

 

For each observed route choice a number of alternative routes in the multimodal public transport 

network was generated, which i) used either the chosen stop or a stop in close proximity of the 

true origin (destination), and ii) at or close to the chosen departure time. The choice set generation 

was done using full information. For more details we refer to (Rasmussen et al. 2016). 

 

The comparison to estimation based on full knowledge of the entire trip was done by using the 

full choice set generated in Rasmussen et al. (2016), and then incorporating the choice set distance 

threshold (CSDT). In the simplest estimation, which was to replicate raw AFC data, we set CSDT 

= 0 meters, corresponding to only allowing routes between the actually chosen stops. Subse-

quently, multiple model estimations were done, i.e. CSDT = [100, 250, 500, 1000, 2 500, 5 000, 

10 000 and 100 000 meters]. The latter implies using the full choice set. The number of route 

alternatives in the choice set for each of the model estimations are shown in Figure 2. 
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Figure 2: Average number of route alternatives in the choice set for each of the 

model estimations 
 

When restricting the choice set to only include route alternatives between the actually chosen 

stops only few relevant routes are included in the model estimation. This might indeed introduce 

bias to the model estimations since important route alternatives are excluded. For the sample data 

most relevant alternatives are within 2 500 meters of the chosen stops, and only few are further 

than 5 000 meters from the actually chosen stops. Such long distances were surprising to observe 

in the data, but were seen for trips with car as access (egress) to public transport, and especially 

for leisure trips, such as bringing (picking up) other people. 

 

 

4. RESULTS 
 

The model estimation results for work trips are shown in Table 1 whereas Table 2 reports rates of 

substitution. This include the model estimations based on the full choice set, i.e. those when in-

cluding knowledge on the full door-to-door travel rather than only tap-in to tap-out (Full 

knowledge), including and excluding access/egress parameters, and those estimated based on se-

lected values of the choice set distance thresholds (CSDT). Figure 3 visualises the accuracy of the 

parameter estimates for all model estimations, i.e. the ratio between the parameter estimate for 

the given model estimation and the true parameter estimate (from the full choice model). Note 

here that the ratios representing full data are always equal to one, by definition. From Figure 3 we 

note that model estimation results stabilise for CSDT at or above 1,000 meters. This is probably 

due to relevant alternatives most often are within 1,000 meters of the actually chosen stop. Hence, 

Tables 1 and 2 reports results for the models using CSDT of 250 and 1,000 meters (RoS also 

reported for 10,000 meters) whereas results for remaining CSDT and leisure are left out due to 

space restrictions. 
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Figure 3: Rates of parameter estimates for the route choice models estimated using 

various restricted choice sets  
 

The results show that all parameter estimates were highly biased when estimating the model using 

full knowledge, but excluding access/egress from the model formulation, cf. Figure 3, which is 

not surprising. When treating the data similar to AFC data and without including stops in vicinity 

of the chosen stops (CSDT = 0) the model estimates are still highly biased leading to highly biased 

rates of substitution between level-of-service characteristics. 

 

When adding parameters for (pseudo) access and egress, based on the random origin and destina-

tion points, the parameter estimates are still notably off compared to the true estimates. However, 

accuracy improves by including stops in close proximity, i.e. when increasing CSDT, and be-

comes stable when including stops within 500-1,000 metes, cf. Figure 3. Further increasing CSDT  

does not change model estimations notably, probably due to stops further away not being relevant 

alternatives for the travellers. 

 

Thus, the results suggest that it is very important to include not only routes between the observed 

stops, but also routes between stops in the vicinity of the chosen stops when estimating route 

choice models based on AFC data. Even if parameter estimates for the pseudo access/egress co-

efficients are off, it is important to include them explicitly to improve accuracy of the remaining 

parameters. However, even though the biases are reduced for in-vehicle times, there are still very 

large biases related to transfer walking time and hidden waiting time. 
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Table 1: Estimated parameters for work trips 
 

 Full knowledge CSDT = 0 meters CSDT = 250 meters CSDT = 1,000 meters 

Parameters Coef. Rob t-test Coef. Rob t-test Coef. Rob t-test Coef. Rob t-test 

In-vehicle time         

Bus (min.) -0.313 -20.80 -0.178 -11.4 -0.225 -17.6 -0.244 -23.6 

Local train (min.) -0.274 -9.49 -0.172 -5.27 -0.099 -5.78 -0.084 -6.19 

Metro (min.) -0.139 -6.84 -0.254 -2.62 -0.210 -9.84 -0.227 -11.3 

Reg. train (min.) -0.281 -12.72 -0.173 -7.64 -0.227 -11.7 -0.233 -14.0 

S-train (min.) -0.234 -15.93 -0.194 -12.2 -0.198 -15.3 -0.191 -17.3 

         

Transfer attributes         

Transfer penalty -2.480 -18.75 -2.18 -17.5 -2.30 -20.3 -2.12 -22.8 

Waiting time (min.) -0.048 -12.69 -0.048 -10.0 -0.049 -10.4 -0.054 -12.7 

Walking time (min.) -0.217 -8.25 -0.061 -2.07 -0.097 -3.81 -0.13 -6.13 

         

Other components         

Access (min.) -0.488 -18.14 - - -1.03 -8.64 -1.05 -26.7 

Egress (min.) -0.418 -17.53 - - -1.01 -7.96 -1.07 -25.3 

Hidden waiting time (min.) -0.120 -8.48 -0.015 -1.15 -0.029 -2.04 -0.058 -3.78 

     

Number of est. parameters 11 9 11 11 

Number of observations 2,553 2,553 2,553 2,553 

Null log-likelihood -12,589 -4,508 -5,722 -9,235 

Final log-likelihood -2,993 1,703 -1,900 -3,097 

Adjusted rho-square 0.761 0.620 0.666 0.663 

 

Table 2: Rate of substitution for estimated parameters for work trips 
 

 Rate of Substitution 

Parameters Full knowledge CSDT = 0 CSDT = 250 CSDT = 1,000 CSDT = 10,000 m 

In-vehicle time      

Bus (min.) 1.00 1.00 1.00 1.00 1.00 

Local train (min.) 0.44 0.97 0.44 0.35 0.35 

Metro (min.) 0.88 1.43 0.93 0.93 0.95 

Reg. train (min.) 0.90 0.97 1.01 0.95 0.97 

S-train (min.) 0.75 1.09 0.88 0.78 0.80 

      

Transfer attributes      

Transfer penalty 7.92 12.25 10.22 8.69 8.74 

Waiting time (min.) 0.15 0.27 0.22 0.22 0.23 

Walking time (min.) 0.69 0.34 0.43 0.53 0.47 

      

Other components      

Access (min.) 1.56 - 4.58 4.30 5.33 

Egress (min.) 1.34 - 4.49 4.39 5.33 

Hidden waiting time (min.) 0.38 0.09 0.13 0.24 0.22 
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Discussion and future work 
 

While the current methodology notably reduced bias in the parameter estimates as compared to a 

simple station-to-station model, it can be further improved. In the current method, the choice set 

distance threshold is based on the distance between chosen and alternative stops. Another ap-

proach is to base CSDT on the distance between the pseudo origin (destination) points and alter-

native stops. This was not chosen, mainly due to computational considerations, as this requires 

generation of choice sets for each simulation of the model estimation (100, or preferably 1000 

simulations). In addition, the sampling distance was kept at 1,000 meters, despite multiple values 

of CSDT below 1,000 meters. It can be argued that the sampling distance should not exceed 

CSDT, which will be considered next. 

 

Alternatively, the method can be improved by using a more advanced model, which eliminates 

the sampling, but rather models the route choice as a conditional probability of the observed stop-

to-stop pair, thus incorporating differences in stop choice attractiveness – and in which the choice 

of origin and destination stops is dependent on service levels between OD-pairs. This elaborated 

model can be expressed through a nested logit model which include feedback mechanisms from 

the lower levels (the route choice) to the top level (station choice). 

 

 

5. CONCLUSIONS 
 

This study has highlighted the problems of estimation bias when estimating route choice models 

using AFC data. By estimating route choice models based on travel survey data it was possible to 

replicate model estimations if treating the data as AFC data as well as testing an approach to 

include alternative stops within certain distances of the chosen stops. The developed framework 

consisting of random generation of origin and destination points around chosen stops resulted in 

more accurate model estimations for the level-of-service characteristics, except for access and 

egress, thus highlighting the importance of including alternative stops when generating choice 

sets in route choice model estimation using AFC data. 
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