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SHORT SUMMARY

This paper explores the temporal patterns in travel production using a full month of production data
from traffic analysis zones (TAZ) in the (entire) Netherlands. This data is a processed aggregated
derivative (due to privacy concerns) from GSM traces of a Dutch telecommunication company.
This research thus also sheds light on whether such a processed data source is representative of
both regular and non-regular patterns in travel production. To this end, the weekly patterns of
hour-by-hour travel production of over 1200 TAZs are clustered using inception convolutional
neural networks with k-mean methods. A silhoutte score shows that three dominant clusters can
be discerned. Each cluster shows different within-day and day-to-day patterns in production.
Furthermore, a spatial analysis of these clusters shows that they are related to urbanization levels:
Urban, Rural, and mixed group. The findings of this study provide further insights in mobility,
relevant for transportation analysis and policies.
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1. INTRODUCTION

Understanding the travel demand patterns is essential for transportation planning and management.
Firstly, travel demand analysis plays a significant role in identifying the current problems of trans-
portation systems and helps in modeling the future traffic state (Thakuriah, 2001). Secondly, the
demand patterns help evaluate the impact of transportation infrastructure and management policies
and strategies, such as flexible-time work schedules and congestion pricing (Gärling et al., 2002).
Thirdly, understanding demand patterns is useful to develop better standards for evacuation plans
and responses (Xu, Chen, & Yang, 2017).

Travel demand includes noticeable spatial-temporal heterogeneity, as the amount of travel differs
strongly across areas as well as time-of-day and day-of-week (Shen, Zhou, Jin, & Wang, 2020).
Temporal variability is especially significant when modeling motor vehicle demand in urbanized
areas where morning and afternoon peaks account for almost 50% of daily travel demand (Lin &
Shin, 2008). Spatial heterogeneity is derived from diverse urbanization levels, economic activities,
lifestyles, transportation accessibility, and resource distribution between areas e.g., (Fotheringham,
Charlton, & Brunsdon, 1998). This spatial-temporal heterogeneity, including the identification of
patterns therein, is an important part of understanding travel demand.

Many studies analyze the relationship between travel demand and land-use properties using meth-
ods based on Ordinary least squares (OLS) (Yang et al., 2018; Maat & Timmermans, 2006).
However, OLS generally assumes homogeneous regression relationships, neglecting the spatial
variation of the data. Overlooking spatial-temporal heterogeneity gives rise to some serious errors,
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for instance, misinterpretation of coefficients and inaccuracy in estimations (Anselin & Griffith,
1988).

To account for spatial heterogeneity, many extended OLS-like models have been developed amongst
which the geographically weighted regression (GWR) model (Brunsdon, Fotheringham, & Charl-
ton, 1996) that is widely used in transportation studies. For example, Cardozo, García-Palomares,
and Gutiérrez study the relationship between transit travel demand and land use mix, bus accessi-
bility, and road density using a GWR model. Whereas the GWR model can sufficiently describe
spatial heterogeneity, it does not address temporal heterogeneity. Typically, days are divided into
multiple periods, in which average (proportional) values are considered for modeling.

To incorporate temporal heterogeneity, a geographically and temporally weighted regression (GTWR)
method to predict transit travel demand was first applied by (Ma, Zhang, Ding, & Wang, 2018).
However, little is still known about how different areas have various spatiotemporal patterns in
travel production associated with their urban development. There is a need to understand the
factors that mediate the interactions between urbanization and travel production in time and space.

Fekih et al. proposes a framework to extract spatiotemporal travel demand patterns from large-
scale GSM traces. Their analysis focuses on within-day variations of travel demand. In this paper
we build on this work and investigate both within-day and day-to-day production patterns of all
the traffic analysis zones (TAZs) in the Netherlands. The performed temporal analysis of the un-
derlying patterns is valuable for adjusting the demand models and prediction. Later we link these
temporal patterns to spatial urbanization levels which is beneficial for urban development strate-
gies and policy makers. In fact, this study proposes three urbanization levels for the Netherlands:
urban, rural, and other. Each level is characterized by its specific travel production pattern within-
day and day-to-day, and this study explores the differences in these patterns. This effort is the first
step to understanding the link between urbanization level and production patterns.

The remainder of this paper is organized as follows: Section 2 describes the research data and the
implemented method. In Section 3, we present the results of our analysis on the temporal patterns
found in the Netherlands. Finally, Section 4 concludes the paper.

2. METHODOLOGY

In this research, the hourly production of the 4-digit postal code zones in the entire Netherlands
during March 2017 is used. Travel production of TAZ i is defined as the number of inter-zonal trips
starting at i. The production values are derived from the GSM traces of a Dutch telecommunication
company accounting for one third of all mobile phone users.

To better characterize the main production patterns, three distinct temporal clusters are presented
and analyzed. A deep convolutional neural network (DCNN) based on transfer learning is applied
for feature extraction. Finally, the K-means algorithm clusters the patterns.

Data description

This research explores in the hourly travel production data of motor vehicles in March 2017 of the
1246 TAZs in the entire Netherlands (see figure 1). The data source is a processed form of GSM
traces of a telecommunication company, namely Vodafone, whose market share is about one-third
of the Dutch population. Another company performed the processing due to privacy concerns of
the raw mobile phone data. Consequently, the available data for this study, instead of the mobile
phone traces, consists of origin-destination (OD) matrices of the motor vehicles based on TAZs in
the Netherlands. These OD matrices have been initially scaled up to the entire Dutch population.
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Figure 1: TAZs in the Netherlands.

For more detail on scaling procedure, we refer the reader to (Meppelink, Van Langen, Siebes, &
Spruit, 2020).

To begin with, we collected the processed data. After pre-processing and reshaping, each zone had
a heatmap of normalized production values. Normalizing the production values enables fast and
stable pattern comparison of various zones. The technique we applied on each production value x
for normalizing is Min-Max Scaling, i.e.,

xnormalized =
x− xmin

xmax − xmin
(1)

where, xnormalized is the normalized value, xmin and xmax are the minimum and maximum production
values in the time series of each TAZ. The resulting normalized values range between 0 and 1.

The horizontal and vertical axes represent the days of the month and the hours of a day, respec-
tively. Figure 2 shows an example. This representation allows us to see the temporal patterns
of production both within a day and between days. Then we used the state-of-the-art Incep-
tionV3 based on transfer learning with the K-means method (Szegedy, Vanhoucke, Ioffe, Shlens,
& Wojna, 2016; Cohn & Holm, 2021; Van Gansbeke, Vandenhende, Georgoulis, Proesmans, &
Van Gool, 2020) to cluster heatmaps.

K-means clustering

The K-mean clustering method splits the N-dimensional data set of M points (heatmaps) into K
clusters such that the sum of the pairwise Euclidean distance between the points of each cluster is
minimized (Hartigan & Wong, 1979). In other words, the objective of this method is to maximize
the similarity between the points in the same cluster and maximize the dissimilarity of points from
different clusters. Initialization of the method is by selecting K points randomly as the cluster
centroids. The clustering process has two significant steps:

• Assignment: assigning each point to its closest centroid. Mathematically this step refers
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Figure 2: An example of production heat map for one zone.

to partitioning the points to the Voronoi diagram (Shamos & Hoey, 1975) generated by the
centroids.

• Update: updating each cluster center to be the average of all points contained within them.

Deep convolutional neural network (DCNN)

The K-means clustering method, due to its easy application and effectiveness, is one of the most
popular algorithms for clustering analysis (Poteraş, Mihăescu, & Mocanu, 2014). However, this
method is inherently a linear algorithm (Ning & Hongyi, 2016). Therefore, it is unsuitable for
complex nonlinear data distributions. To take the non-linearity of data into account, CNN trans-
forms input heatmaps to final representations, so-called feature vectors, which are separable by a
linear clustering algorithm (van Elteren, 2018), i.e., CNN divides the different highlights of the
heat maps for analysis and clustering. After this transformation step, we have a set of feature
vectors used for K-means clustering.

We extracted the heatmap feature vectors by Google’s InceptionV3 image analyzing deep neural
network. It is trained on the ImageNet dataset which consist of millions of images used for object
recognition, and image classification. For details about this dataset, we refer the reader to (Deng
et al., 2009). Some features of Inception architecture are as follows (for more details refer to
(Szegedy et al., 2016)):

• it is a module that typically has three types of different sizes of convolution and a maximum
pooling.

• the channel is aggregated after the convolution operation in the previous layer for the net-
work output. Then a nonlinear fusion is applied.

This architecture improves adaptability to different scales, and overfitting is better prevented (Kaur
& Gandhi, 2020).

Transfer learning

As one increases the depth of the neural network, it will expand the number of parameters of
the neural network. However, this improvement is at the cost of more computation resources

4



and a larger dataset. To solve this issue, CNN based on transfer learning comes into the picture.
Transfer learning lets us transfer the already trained model parameters to our new model and helps
its training (Wang et al., 2019). After training on a large dataset, e.g., ImageNet, one can adopt
transfer learning because CNN is able to learn generic features that are also applicable to other
images without the need for training from scratch. Furthermore, the weights of the CNN, which
is pre-trained on a large dataset, improve its accuracy for a specific task where the amount of
available training data is limited (Iglovikov & Shvets, 2018), as stands for our data set.

Clustering evaluation

To calculate the goodness of clustering and select the appropriate number of clusters in the K-
means method, we used the Silhouette Coefficient (Rousseeuw, 1987). The Silhouette ranges
between -1 and 1, where high values show a well-matched point to its own cluster and poorly
matched to the neighboring clusters. If many points have a negative value, the number of clusters
needs to be modified. Silhouette Coefficient of point i is calculated as s(i) = x(i)−y(i)

max(x(i),y(i)) where, x
is the average intra-cluster distance, and y is the average inter-cluster distance.

Furthermore, cluster analysis is an unsupervised learning problem, therefore a proper validation is
of significant importance. Accordingly, two main types of validation criteria are introduced in the
literature: internal and external (Rendón, Abundez, Arizmendi, & Quiroz, 2011; Jain, 2010). The
internal criterion validates the the clustering based on the properties that are inherent to the data
set. However, the external criterion validates based on the a priori information on the structure of
the data, namely true labels (or ground truth). Such information is on the other hand usually either
subjective or not available. Therefore, we used external criterion for evaluation of our clustering
results. The qualitative metric of internal evaluation is visually assessing the similarity between
clusters. The quantitative metric consist of the confidence interval of each cluster and evaluating
how well the clusters are separated from each other. Also, comparing the overall area of different
land-use types (derived from Open Street Map (OSM) (OpenStreetMap contributors, 2017) data)
in the clusters help relating the resulting clusters to land-use types.

3. RESULTS AND DISCUSSION

We clustered the travel production heatmaps of the entire 1246 TAZs in the Netherlands, and
calculated the Silhouette Score (SS) for various K values to determine the optimal amount of
clusters. Our results suggest that the best cluster separation occurs when K=3 (see figure 3).
Clustering the temporal patterns of production, using inception V3 with k-mean method, result in

Figure 3: Silhouette Score for finding the optimum number of clusters.

the map shown in figure 4.
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(a) clusters and city centers. (b) cluster share count.

Figure 4: Travel production pattern clusters in the Netherlands.

Observing these three classes in space hints that zones in cluster1 which constitute a smaller
proportion of zones (as shown in figure 4b), happen to be in more urbanized areas. In fact, as
displayed in figure 4a, out of 43, 39 city centers fall into cluster1. Moreover, the obsolete areas
are the least urbanized areas that happen to be in cluster2. The majority of farmlands also belong
to this class. Comparing figure 4a with the land-use data of OSM (OpenStreetMap contributors,
2017) implies the following high density of features about cluster1:

• commercial and office buildings,

• rail and service roads,

• cycleway and footway,

• car and bicycle parking.

To look closer and quantify our claim, figure 5 shows that the majority of ( 50%) commer-
cial/industrial areas, as a representation of urban areas, in the province of Utrecht belong to clus-
ter1. Another representation (figure 6 ) shows that 48% of farmlands which are usually interpreted
as rural areas fall into cluster2.

The above statements confirm that cluster1 reflects urban, cluster2 rural, and cluster0 mixed-
level of urbanization area class. An analogy of the three clusters of temporal heatmaps of travel
production is given in figure 7. Two of each cluster from various areas in the Netherlands are
shown to see the similarities of the images inside the same cluster. Cluster1 (figures 7a and 7b),
reflecting the urban class, has more severe afternoon peaks between 15:00 and 19:00 in producing
trips. It can be due to more work-related land-use, i.e., people tend to leave work in the afternoon,
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(a) commercial/industrial land-use.
(b) distribution of commercial/industrial
area over the clusters.

Figure 5: share of clusters from commercial/industrial areas.

(a) farmland land-use.
(b) distribution of farmland area over the
clusters.

Figure 6: share of clusters from farmland areas.

which causes a rise in the travel production of the urban places. Unlike the working days, week-
ends do not have significant peaks. The outliers of figure 7b might be indicating the non-regular
patterns in that specific zone, which needs further analysis with longer intervals to confirm.

Cluster2 (figures 7c and 7d) which shows the rural class, displays more severe morning peaks
from 06:00 to 09:00. It might be due to the dominancy of residential to work-related land use. In
other words, people in residential areas mostly leave their house for their work (mostly located
in urban areas) which causes extreme travel production values in the morning. Compared to the
urban class in cluster1, the smaller peak interval reflects more scheduled activities (e.g., starting
time of work) in the mornings and less obligation to leave urban zones (e.g., work) on time in the
afternoons. Additionally, less regular activities like shopping and social events in the afternoon in
metropolitan areas (i.e., cluster1) also trigger the longer peak range.

Cluster0 presents the patterns other than the ones in cluster1 and cluster2. For instance, in figure
7e, morning and afternoon peak seems almost equally extreme, which can be a presenter of suburb
areas where a mix of residential and work land-use is established. Figure 7f, on the other hand,
seems to be a weekend trip producer as some peaks are observed during the weekends and Friday
afternoons.

Figure 8 gives insight into the average total hourly patterns of the travel production in each clus-
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(a) cluster1 (b) cluster1

(c) cluster2 (d) cluster2

(e) cluster0 (f) cluster0

Figure 7: travel production clusters.

ter. The morning and afternoon peaks of all clusters seems to be almost at the same time range,
however their difference in the production values are more significant during the afternoon peak.
Figure 8a represents the line plots of 5% random sub-sampling of each cluster for 10 times. Ac-

(a) with random 5% random sub-sampling for
10 times.

(b) with 95% confidence interval as the
shaded area.

Figure 8: Average hourly production of the three clusters.

cordingly, the values are very widely scattered, especially in cluster 1, with higher average produc-
tion in almost all day hours. In contrast, cluster2 representing the rural class, displays the lowest
average production throughout a day. The shaded area in figure 8b represents the 95% confidence
interval of average production, i.e., the 95th percentile of the distribution of the mean value for
multiple (10,000) sub-samples. It shows that the estimated means of the clusters are robust and
not sensitive towards the applied sampling to compute them. Moreover, the means of clusters are
significantly different.
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Figure 9 displays the average total daily pattern of the travel production in each cluster. In the

(a) with random 5% random sub-sampling for
10 times.

(b) with 95% confidence interval as the shaded
area.

Figure 9: Average hourly production of the three clusters.

same way as hourly patterns, weekly average values seem to be robust estimates which imply
(based on figure 9b showing the average confidence interval) well-separated clusters. However,
figure 9a shows high variance meaning a widely scattered distribution of values. Moreover, the
daily patterns seem very similar among all the clusters. A slight difference lies in the days with
maximum averages. These are Thursday and Tuesday for cluster1, which indicates working areas.
The days with maximum production for cluster0 and cluster2 are Tuesday, Thursday, and Friday,
which can hint that work is not as dominant as it is in cluster1, i.e., as some part-time employees
do not work on Fridays, having growth in the production values mainly indicates non-work-related
trips.

4. CONCLUSIONS

The results presented in this paper describe the spatiotemporal patterns of travel production in
TAZs of the Netherlands. The travel production of different areas reveals different temporal pat-
terns within a day and between days. Clustering these patterns using a CNN based on transfer
learning with the K-means method introduced three distinct clusters in the Netherlands. Observ-
ing these clusters in space and comparing them with the OSM land-use map suggested different
urbanization levels for each cluster: urban, rural, and mixed-level. An urban area, which mainly
presents the city center with a high density of urban facilities, reveals a sharp afternoon production
peak indicating more work-related activities. However, a rural area shows more extreme produc-
tion values in the morning, suggesting more residential. Mixed levels display other patterns in time
and space. Our analysis shows that the three clusters have different average production, which is
not sensitive to sampling. The analysis presented in this paper can be used in demand modeling
studies to see the effect of urbanization on demand. Moreover, such analysis is required before
using the processed demand data for policymaking and network development.
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