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SHORT SUMMARY

Efficient traffic control requires an understanding of vehicle flows in the road network, where two
important components are demand and route choice. The aim of this study is to use GPS data to
identify key attributes explaining the route choice observed in data. The data set consisted of about
150,000 trips and was divided into a training dataset and a test dataset. The two datasets were
compared and experiments show that the routes used are similar. Discrete route choice models
were estimated with a route set of observed routes in the training data. The best model showed a
result of 73 % correct predictions and a route choice distribution error of 19 %. Furthermore, the
result indicated that simplicity of the route is more important than the travel time.
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1. INTRODUCTION

Transportation accounts for approximately a fourth of the global carbon dioxide emissions (IEA,
2019). One contributing factor is congestion, which occurs when the number of vehicles on a road
reaches the capacity limit (Treiber & Kesting, 2013). While a straightforward solution would be
to add more capacity to the road network, this would not be an efficient use of resources since it
induces new traffic demand (Melo, Graham, & Canavan, 2012). Thus, controlling and managing
the traffic given the current network would be a cost efficient way of reducing congestion. The
first step for efficient traffic control is to understand the flows, where two important components
are knowledge about demand and route choice. This study aims to use GPS data to identify key
attributes that can explain the route choice.

There have been various studies examining route choice with different purposes in the past, many
using discrete choice models. Hess et al. (2015) and Montini, Antoniou, and Axhausen (2017) both
develop multinomial logit models based on GPS trajectories, with focus on heavy goods vehicles
and public transport. Dhakar and Srinivasan (2014) develop a path size logit model and focus
on finding key attributes by combining GPS traces with a travel survey. Furthermore, Duncan
et al. (2021) integrated a path size logit model with a bounded choice model to overcome the
problems of route correlations and unrealistic routes among the alternatives. They emphasize the
importance of having a route choice set that includes only the routes that are being used to get a
realistic result. Qin et al. (2019) propose a taxi trip choice model for anomaly detection, and they
handled the choice set size issue by utilizing the historically observed routes as the choice set.
Fosgerau, Frejinger, and Karlstrom (2013) and Mai, Yu, Gao, and Frejinger (2021) both suggest a
recursive logit model that formulates the route choice model as a sequence of link choices where
the decision maker chooses the utility-maximizing outgoing link at each node. With this approach,
there is an infinite number of alternatives in the choice set. Yao and Bekhor (2020) deal with
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the choice set issue by sampling a choice set from route characteristics clusters. Axhausen and
Schüssler (2009) discuss the similarity between the alternatives in addition to the choice set size
issue. They evaluate both different choice set generation algorithms and different formulations of
the similarity factor. Their conclusion is that a performance optimised Breadth First Search on
Link Elimination together with a choice set reduction procedure and a road type specific path size
factor was the best in their study.

Regardless of the application of the route choice model and the choice set size, travel time is a
common attribute to describe the utility of a route. It could be the free flow travel time, mea-
sured travel time, or travel time calculated as a function of demand and capacity. Table 2 shows
additional attributes that were found in road transport literature using passive data.

Table 1: Attributes in a route choice model

Attributes Occurrences
Travel time Hess et al., 2015; Dabbas et al., 2021; Montini et al.,

2017; Deng et al., 2021; Dhakar & Srinivasan, 2014;
Duncan et al., 2021; Fosgerau et al., 2013; Axhausen
& Schüssler, 2009; Mai et al., 2021; Yao & Bekhor,
2020; Bovy et al., 2008

Path size/commonality factor/
correlation factor/link size

Hess et al., 2015; Montini et al., 2017; Duncan et al.,
2021; Fosgerau et al., 2013; Axhausen & Schüssler,
2009; Mai et al., 2021; Bovy et al., 2008

Route length Deng et al., 2021; Dhakar & Srinivasan, 2014; Dun-
can et al., 2021; Yao & Bekhor, 2020; Bovy et al.,
2008

Road type Montini et al., 2017; Deng et al., 2021; Axhausen &
Schüssler, 2009; Yao & Bekhor, 2020; Bovy et al.,
2008

Number of turns and signals Montini et al., 2017; Deng et al., 2021; Dhakar
& Srinivasan, 2014; Fosgerau et al., 2013; Yao &
Bekhor, 2020

Number of crossings/intersections/
links

Deng et al., 2021; Dhakar & Srinivasan, 2014; Fos-
gerau et al., 2013; Mai et al., 2021; Yao & Bekhor,
2020

Speed (average or maximum) Dhakar & Srinivasan, 2014; Yao & Bekhor, 2020;
Bovy et al., 2008

Route delay Yao & Bekhor, 2020; Bovy et al., 2008
Route cost Hess et al., 2015; Yao & Bekhor, 2020
Euclidean distance in OD-pair Yao & Bekhor, 2020; Dhakar & Srinivasan, 2014
Path size depending on road type Axhausen & Schüssler, 2009
Number of consecutive motorway
links (plausibility)

Axhausen & Schüssler, 2009

Percentage of route in city center Yao & Bekhor, 2020
Variance of travel time Mai et al., 2021

Based on observed trajectory data from Stockholm, we create a route set and estimate discrete
route choice models to fulfil the aim.
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2. METHODOLOGY

A dataset of GPS trips were divided into a training dataset used for model estimation and a test
dataset used for validation. The route set to be used in the discrete choice model were the histori-
cally observed routes in the training dataset, (e.g. Qin et al., 2019). Based on the training dataset,
logit models were estimated to predict route choice. The probability of alternative i being chosen
out of the route set C is calculated using Equation 1.

P(i|C) =
eVi

∑ j∈C eVj
(1)

where Vi is the utility of alternative i based on a number of attributes. The general structure of
the utility function is Vi = ∑k βkxik, with coefficients βk and values xik for each attribute k and
alternative i. Some attributes are related to the route characteristics and does not vary between the
travelers, such as route length and road type. Others are dependent on the driver and what time of
the day the trip occurred, such as travel time and delay. Since all routes were not observed during
all times, travel time was calculated using the link mean travel time over four time intervals. A
link travel time variance was also calculated and summarised to a route variance.

Models were estimated using maximum likelihood and performance statistics for evaluation were
log-likelihood, BIC, hitrate and RMSE of predicted and observed route probabilities. The log-
likelihood increases with more attributes, possibly resulting in overfitting the model. The BIC
value attempts to avoid that by introducing a penalty for the number of attributes. When observed
route choice had the largest predicted route probability, it was considered a hit, and dividing the
number of hits with the number of observations gives a hitrate (Bovy et al., 2008). One model
was estimated based on forward stepwise selection (FSS), where one attribute at a time is added
to the model based on some criteria, e.g. BIC (James et al., 2017). The hitrate and RMSE of route
probabilities were computed also for the test data to get the test error as validation.
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Figure 1: OD-pairs and city area of Stockholm.

3. RESULTS AND DISCUSSION

A dataset of INRIX GPS trajectories from Stockholm was used to estimate the route choice mod-
els. The dataset was collected during 5 weeks and consist of 593,153 trips, with a penetration rate
of 1-2%. More information about the dataset is presented in Ahlberg et al. (2021). A trip is a se-
ries of links used by a traveler building up a route between origin and destination. The origins and
destinations were aggregated over 558 zones, and the 124 origin-destination pairs (OD-pairs) with
the largest number of observations were used in the analysis (Figure 1). To increase the number of
observations, all trips that pass by the origin and destination zones are included, not only the ones
starting and ending there.

The first two weeks of the dataset (weekends excluded) constitutes the training dataset (65,784
trips), while the following two weeks constitutes the test data (83,800 trips). Figure 2 shows
example OD-pairs with training data routes in blue and test data routes in orange. The most used
routes in each OD-pair primarily uses the major roads. Routes more than 50% longer than the
shortest route in each OD-pair were filtered out. The left part of Figure 3 illustrates the number
of routes in the two datasets (in total 1303 in training data and 1557 in test data). The right part
of Figure 3 presents the percentage of routes in the training data that are used also in the test
data when routes with less observations than a threshold are excluded. When all observations are
included (threshold = 0), around 60 % of the routes in the training data are used in the test data
while more than 90 % of the routes are used when all routes only used once are excluded (threshold
= 1). Although excluding routes gives a more stable route set, there is a risk of excluding routes
rarely used because of the low penetration rate. When the exclusion threshold is one, two and
three, the number of routes decreases with 46 %, 45 % and 40 % respectively compared to all
routes in the training data.
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Figure 2: Routes training data (blue), routes test data (orange) of three example
OD-pairs. The width shows the number of observations of each route.

Figure 3: Number of routes in the training dataset vs number of routes in the test
data for the 124 OD-pairs with highest demand to the left, and similarity between
the datasets to the right.
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Table 2: Route attribute statistics, difference within OD pairs

Attribute Average min diff max diff average diff s.d. diff
ttmean [min] 1.18 0.24 29.94 4.51 4.86
ttfree [min] 0.81 0 13.47 1.87 2.38
delay [share] 0.47 0.17 62.30 3.45 7.07
variance [min] 21.70 1.62 1,277.20 273.89 290.71
rlength [km] 0.78 0 16.42 1.30 1.97
numlinks 5.48 0 138 15.78 19.47
p_city [share] 0.33 0 1 0.07 0.20
p_major_roads [share] 0.75 0 1 0.47 0.43
cf 0.74 0 2.62 0.85 0.64

Based on the overview of attributes in the Introduction and the available data, the attributes in-
cluded in this study were mean travel time in minutes (ttmean), free flow travel time in minutes
(ttfree), route length in kilometers (rlength), relative delay (ttmean - ttfree)/ttfree), route variance,
number of links (numlinks), percentage length of trip within the city center defined in Figure 1
(p_city), percentage length of major roads in route (p_major_roads) and a commonality factor as
Huang et al. (2018) (cf). The commonality factor is included to account for the overlap between
the alternatives.

Route attribute statistics for the training dataset are shown in Table 2, presented as difference
within the OD-pairs. The Average column presents the average over all routes in all OD-pairs.
That the average ttmean is shorter than the average difference indicates that there are a lot of short
routes, which could be an effect of that all routes passing by the OD-pairs are included (more trips
passes by short OD-pairs than long ones). That is indicated also by the low averages of ttfree,
rlength and numlinks.

Three route choice models and a null model for comparison were estimated. The nullmodel
(mNull) does not include any attributes and divides the travelers equally over the alternative routes.
The second model includes the most commonly used attributes in Table 2 (mTable). The third
model was selected inspired by the the key attributes suggested in Yao and Bekhor (2020) (mYao).
For the fourth model, the FSS method based on BIC was used to choose the attributes (mFSS).
Figure 4, presenting the BICs of the best models for every number of attributes, suggests that up
to eight attributes, the model gets better the more attributes included. The left part of the figure
presents what attribute(s) to include with the fixed number of attributes. Thus, if only one attribute
is included, the best one to include is p_major_roads. The lowest BIC value is obtained when 8
attributes are included. The somewhat surprising fact that ttmean was not included earlier in the
model, could be a result of the route set generation process. All routes in the route set have been
used at least once, thus at least one traveler considered it to be the best route. When routes are
generated, as in conventional route set generation, unreasonable routes are included in the route
set.

The resulting models are shown in Table 3, presenting the coefficient values with p-values indi-
cated by asterisks. As expected, all models are better than the null model, and a low BIC value,
a high hitrate and high log-likelihood indicate that mFSS is the best model for this dataset. Al-
though, the RMSE is lower for mYao. For the mFSS model all coefficients are significant, and
most of them have reasonable signs. ttmean, ttfree and delay all decrease the utility, which is
reasonable. However, rlength increases the utility of the route, which could indicate that travelers
take detours to use major roads. Thus, simplicity of the route seems to be more important than
the distance, which explains why the coefficient for p_major_roads is positive and the coefficient
for numlinks is negative. That a larger percentage of city center links increases the utility could
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Figure 4: BICs of the best models for fixed number of attributes to the right. The
result suggests that the more attributes there are the better. The attributes included
in each model is shown in the left diagram.

be explained by the fact that one of the largest roads in Stockholm was included in the city center
area. The coefficient for the commonality factor is negative, which is in line with the purpose of
the attribute.

The hitrates and RMSE of the test data are only slightly worse, or even better than the training data
metrics, which suggest a low risk of an overfitted model with good performance also on new data.
The test hitrates for datasets with exclusion threshold one, two and three respectively are 83.19 %,
83.41 % and 85.08 %. Thus, the hitrate improves when more routes are excluded (e.g. Duncan et
al., 2021).
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Table 3: Model estimations with coefficients for each attribute and performance
metrics for both training and test data.

Attribute mNull mTable mYao mFSS

ttmean −0.40∗∗∗ −0.28∗∗∗ −0.13∗∗∗

ttfree −0.73∗∗∗

rlength 0.95∗∗∗ 0.89∗∗∗ 1.30∗∗∗

p_major_roads 2.05∗∗∗ 1.88∗∗∗ 1.70∗∗∗

cf −0.47∗∗∗ −0.38∗∗∗

p_city 1.69∗∗∗ 1.51∗∗∗

delay −0.16∗∗∗ −0.26∗∗∗

variance

numlinks −0.10∗∗∗ −0.14∗∗∗ −0.10∗∗∗

Training data

BIC 309,899 244,833 240,932 239,512
Log Likelihood −154,944 −122,390 −120,434 −119,713
Hitrate [%] NA 68.77 69.02 75.50
Route probabilites [RMSE] 0.195 0.192 0.188 0.191
Observations 65,784 65,784 65,784 65,784

Test data

Hitrate [%] NA 68.08 69.19 72.58
Route probabilites [RMSE] 0.179 0.173 0.169 0.172
Observations 83,800 83,800 83,800 83,800

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table created with the Stargazer package in R Hlavac (2018).

4. CONCLUSIONS

Observed GPS data was used to identify key route attributes for discrete route choice models. The
literature review summarized common attributes to include and emphasized the importance of a
reasonable route set. The result suggested that simplicity seems to be more important than travel
time and distance, and the best model showed a test hitrate of 73 % and RMSE of 19 %.

The test hitrate increased from 73 % to 83 % when a more filtered route set was used (exclusion
threshold of 1), which is in line with existing literature. Thus, the result suggests that building
up the choice set of the historically observed routes is promising. However, the number of routes
decreased with 46 %, risking exclusion of rarely used routes. Thus, there is a trade-off between
model performance and route set size.
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The results of the study together with a large increase in available GPS data indicates a promising
future for improved data-driven route choice models. Improved route choice models are an im-
portant component of traffic management tools that enables more efficient actions for congestion
reduction. As future work, it would be interesting to include more attributes and analyse how more
data as well as different type of estimation methods affect the result.

ACKNOWLEDGMENTS

This work was supported by the Swedish Transport Administration [grant number TRV 2020/118663
and TRV 2018/132473].

REFERENCES

Ahlberg, J., Danielsson, A., Drageryd, L., Gundlegård, D., Ramsey, J., Sjöholm, A., &
Sjöstrand, S. (2021). Probedata: förstudie kring användning av gps-baserad probe-
data för skattning av hastigheter, länkflöden och ruttval (No. TRV 2019/98384).

Axhausen, K. W., & Schüssler, N. (2009). Accounting for route overlap in urban and
suburban route choice decisions derived from GPS observations. , 32 p. (Artwork
Size: 32 p. Medium: application/pdf Publisher: ETH Zurich) doi: 10.3929/ETHZ
-A-005916981

Bovy, P. H. L., Bekhor, S., & Prato, C. G. (2008, January). The Factor of Revisited
Path Size: Alternative Derivation. Transportation Research Record: Journal of the
Transportation Research Board, 2076(1), 132–140. doi: 10.3141/2076-15

Dabbas, H., Fourati, W., & Friedrich, B. (2021). Using Floating Car Data in Route
Choice Modelling - Field Study. Transportation Research Procedia, 52, 700–707.
doi: 10.1016/j.trpro.2021.01.084

Deng, Y., Yan, S., Hu, X., & Zhang, P. (2021, March). Mining Route Set Distribution
Range and Affecting Factor Threshold Based on Global Positioning System Data.
Transportation Research Record: Journal of the Transportation Research Board,
036119812199905. doi: 10.1177/0361198121999059

Dhakar, N. S., & Srinivasan, S. (2014, January). Route Choice Modeling Using GPS-
Based Travel Surveys. Transportation Research Record: Journal of the Transporta-
tion Research Board, 2413(1), 65–73. doi: 10.3141/2413-07

Duncan, L. C., Watling, D. P., Connors, R. D., Rasmussen, T. K., & Nielsen, O. A. (2021).
A bounded path size route choice model excluding unrealistic routes: formulation
and estimation from a large-scale GPS study. Transportmetrica A: Transport Sci-
ence, 1–59. doi: 10.1080/23249935.2021.1872730

Fosgerau, M., Frejinger, E., & Karlstrom, A. (2013, October). A link based network
route choice model with unrestricted choice set. Transportation Research Part B:
Methodological, 56, 70–80. doi: 10.1016/j.trb.2013.07.012

Hess, S., Quddus, M., Rieser-Schüssler, N., & Daly, A. (2015). Developing ad-
vanced route choice models for heavy goods vehicles using GPS data. Trans-
portation Research Part E: Logistics and Transportation Review, 77, 29–44. doi:
10.1016/j.tre.2015.01.010

Hlavac, M. (2018, May). Package stargazer. Comprehensive R Archive Net-
work (CRAN). Retrieved from https://cran.r-project.org/web/packages/
stargazer/index.html

Huang, Z., Huang, Z., Zheng, P., & Xu, W. (2018, May). Calibration of C-Logit-
Based SUE Route Choice Model Using Mobile Phone Data. Information, 9(5),

9

https://cran.r-project.org/web/packages/stargazer/index.html
https://cran.r-project.org/web/packages/stargazer/index.html


115. (Number: 5 Publisher: Multidisciplinary Digital Publishing Institute) doi:
10.3390/info9050115

IEA. (2019). Transport: Improving the sustainability of passenger and freight transport.
Retrieved from https://www.iea.org/topics/transport

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical
learning with applications in r. Springer.

Mai, T., Yu, X., Gao, S., & Frejinger, E. (2021, September). Routing policy choice predic-
tion in a stochastic network: Recursive model and solution algorithm. Transporta-
tion Research Part B: Methodological, 151, 42–58. doi: 10.1016/j.trb.2021.06.016

Melo, P. C., Graham, D. J., & Canavan, S. (2012, January). Effects of Road Investments
on Economic Output and Induced Travel Demand: Evidence for Urbanized Areas in
the United States. Transportation Research Record, 2297(1), 163–171. (Publisher:
SAGE Publications Inc) doi: 10.3141/2297-20

Montini, L., Antoniou, C., & Axhausen, K. W. (2017). Route and mode choice models
using GPS data. , 14 p. (Artwork Size: 14 p. Medium: application/pdf Publisher:
ETH Zurich) doi: 10.3929/ETHZ-B-000119554

Qin, G., Huang, Z., Xiang, Y., & Sun, J. (2019, January). ProbDetect: A choice
probability-based taxi trip anomaly detection model considering traffic variabil-
ity. Transportation Research Part C: Emerging Technologies, 98, 221–238. doi:
10.1016/j.trc.2018.11.016

Treiber, M., & Kesting, A. (2013). Traffic Flow Dynamics. Berlin, Heidelberg: Springer
Berlin Heidelberg. doi: 10.1007/978-3-642-32460-4

Yao, R., & Bekhor, S. (2020, December). Data-driven choice set generation and estima-
tion of route choice models. Transportation Research Part C: Emerging Technolo-
gies, 121, 102832. doi: 10.1016/j.trc.2020.102832

10

https://www.iea.org/topics/transport

	INTRODUCTION
	METHODOLOGY
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

