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SHORT SUMMARY

Usage data plays a major role in evaluating and planning sharing systems such as bike-sharing.
Hence, effective methods are needed to analyze and model this kind of data. In this research, trip
data of the bike-sharing system in Cologne, Germany is modeled. We compare two methods that
can be applied in the modeling of spatial trip data, facing the requirements of spatial autocorrela-
tion, zero-inflation and count data simultaneously. A generalized additive model (GAM) based on
a Tweedie distribution is compared to a machine learning approach using the XGBoost algorithm.
While the results of the GAM are easier to interpret and allow for the direct integration of spatial
interdependencies in the model estimation, XGBoost leads to more precise predictions and can
potentially be estimated in a shorter amount of time.

Keywords: bike-sharing, generalized additive model, machine learning, spatial data analysis, trip
modeling

1. INTRODUCTION

Currently, more and more types of shared mobility options emerge in urban areas, among them
car-, bike-, scooter- and e-scooter sharing. Ride-hailing services such as Uber serve similar func-
tions. They supplement the existing urban transport system and increase users’ flexibility in trip
making by multimodal or intermodal mobility. All these options have in common that they are
organized digitally. The generated usage data holds valuable information about urban mobility
that can be used to better understand the usage of such sharing systems. The analysis of starting
and ending points of trips allows to efficiently plan and manage sharing systems and to integrate
them into the urban transport system.

In previous research, (zero-inflated) negative binomial regression has been found to be an ade-
quate model to investigate sharing system usage (Bai & Jiao, 2020). Generalized additive models
(GAM) underlying a negative binomial distribution of the dependent variable can be success-
fully applied as well (Hu, Xiong, Liu, & Zhang, 2021). The analysis of spatial datasets usually
raises the question of spatial autocorrelation that requires further attention: it can be dealt with
through the estimation of a geographically weighted regression (GWR) (Caspi, Smart, & Noland,
2020). Machine learning approaches are increasingly applied to model and predict the usage of
sharing systems (Cheng, Chen, Ye, & Shan, 2021). A small number of studies apply XGBoost
in the context of sharing systems (Yang, Heppenstall, Turner, & Comber, 2020). In contrast to
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this research, most of these studies model the temporal distribution to predict demand over time.
Comparisons between different machine learning approaches for modeling sharing data usually
cannot determine one single best model, as different models perform best according to different
evaluation metrics (A. Li & Axhausen, 2019). Still, XGBoost often ranks among the best models
(Sathishkumar, Park, & Cho, 2020).

In this paper, a case study of the free-floating bike-sharing system of nextbike in Cologne, Ger-
many, is conducted to compare modeling methods. Usage data was collected over a period of 5
weeks in 2019 and is used to calculate the number of bike-sharing trips that started within each cell
of a 100 m grid laid over the operating area. This variable is to be modeled in relation to spatial
influence factors both by a GAM and a machine learning approach using XGBoost. After training
the models, predictions are generated that can be compared with a test dataset. To the best of our
knowledge, no methodological research has yet addressed the specifics of modeling count data, an
excess number of zeroes and spatial autocorrelation simultaneously. This paper aims at comparing
two methods that meet these requirements. Besides predictive accuracy, ease of interpretation and
computation time are evaluated.

2. METHODOLOGY

The underlying dataset contains the locations of all bikes in the nextbike system in Cologne that
were collected from 30.09.2019, 10:46 am until 04.11.2019, 10:49. The data was scraped from
https://offenedaten-koeln.de through an excel VBA script saving the locations every 15
minutes in a csv-table. All tables are combined and changes in location indicating the completion
of a trip are extracted. All preprocessing and data analysis is performed in R. Trips that started
or ended outside of Cologne or are shorter than 100 m are removed to exclude unlikely trips and
repositionings of parked bikes. After preprocessing, 76,859 trips are included in the dataset. Then,
the operation area of nextbike is divided into 8,955 grid cells of 100x100 m size and the number
of trips that started within each of them is summarized over the whole observation period. These
values are used as the dependent variable to be modeled.

Possible spatial influence factors on bike-sharing to be included in the model as independent vari-
ables are selected based on previous research. They include different land uses, points of interest
(POI), the distance to universities and elements of the public transit system such as light rail and
bus stations, population density and the share of age groups within each grid cell. All variables
are presented in Table 1.

The bike-sharing usage data is split into a training and a test dataset that contain approximately
the same number of trips using the 3,263 different times of observation. All trips are assigned
subsequently according to their start time, alternating with every time of observation, until the
second last time. After this process, there are 38,875 trips included in the training dataset and
37,965 trips in the test dataset. For both datasets, the number of trips that started through the
whole observation period is summarized per grid cell.
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Table 1: Description of all variables included in the dataset

Feature Description Unit
Trip count Number of bike-sharing trips Count

that started in each grid cell
FNP 0 Residential building land
FNP 1 Special residential building land
FNP 2 Mixed building land
FNP 3 Commercial land
FNP 4 Industrial land
FNP 8 Water area
FNP 9 Land for supply and disposal
FNP 11 Land for community facilities Percentage of grid cell
FNP 12 Railway land
FNP 13 Land for trains
FNP 15 Core area
FNP 16 Mixed area
FNP 17 Special building land
FNP 18 Special building land

for a specific purpose
FNP 21 Redevelopment area
Green spaces Green spaces of at least 100m2 Percentage of grid cell
Buildings Buildings of all kinds
Shops, food Stores, service providers, restaurants,
outlets, bars cafés, bars, nightclubs
Healthcare facilities Doctors, hospitals, retirement homes
Schools Elementary, secondary schools
Kindergartens Kindergartens
Museums Museums
Event venues Event venues, theatres, movie

theatres, art exhibitions Number of all POI
Libraries Libraries within 3x3 grid cells
Public institutions Buildings of the city

administration, Courthouses
Sports facilities Sports centers, gyms,

soccer fields, running tracks
Tourist attractions Sights, tourist information
Hotels Hotels
Places of worship Places of worship of all kinds
Playgrounds Playgrounds
University Building of a university/

university of applied sciences Distance to the closest object
Bus Bus station of the corresponding category
Light rail Light rail in m/1,000
Arterial road Arterial road (1 if distance > 1,000 m)
Water Water body of at least 10,000m2

Population Total population Total number per grid cell
Shared flats Total number of shared flats
0-17 years Share of persons aged 0-17 years Share of persons
18-29 years Share of persons aged 18-29 years of the respective age group
30-49 years Share of persons aged 30-49 years living within 3x3
50-64 years Share of persons aged 50-64 years grid cells
x-coordinate x-coordinate Coordinate system:
y-coordinate y-coordinate ETRS89/UTM zone 32N
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Parametric model

As a parametric model, a GAM based on a Tweedie distribution is estimated that outperformed
a negative binomial model in a preliminary analysis. This distribution family offers very flexible
options to be adapted and allows to generalize many other distributions to model extremely skewed
data (Dunn & Smyth, 2018, p.458). A GAM is a semi-parametric model that allows integrating
smooth functions of variables as part of the predictor variables (Wood, 2017, p.161).

Smooth functions are included as penalized thin plate regression splines to deal with nonlinear
effects of variables. Additionally, they enable variable selection and to control for spatial auto-
correlation through the integration of a two-dimensional smooth term f (x,y) based on the x- and
y-coordinates of each grid cell’s centroid. The GAM is fit by penalized iteratively re-weighted
least squares (PIRLS) including a penalty for the wiggliness of each smooth function (Wood,
2017, p.249). Smoothing parameters are estimated using a Laplace approximation for restricted
maximum likelihood (REML).

XGBoost

The XGBoost algorithm is designed as a scalable machine learning system for gradient boosting
that is based on the idea of decision trees. A tree ensemble model is trained applying boosting that
enables merging several weak learners into a stronger model. Among a broad range of modeling
options, XGBoost can be applied for Poisson regression and Tweedie regression. As a decision
tree on its own can suffer from overfitting, measures to lower the variance are taken, such as
regularization, shrinkage and column subsampling (Chen & Guestrin, 2016).

While it is possible to estimate XGBoost models without hyperparameter tuning using the default
values, the adjustment leads to much more appropriate models (Ryu, Shin, & Chung, 2020). There
are over 30 hyperparameters in XGBoost, but it is sufficient to tune only a smaller share. As gen-
eral model settings, booster = "gbtree", eta = 0.3, eval_metric = "rmse" in combination
with maximize = FALSE and early_stopping_rounds = 10 are chosen.

The optimal number for nrounds is determined through cross-validation using the default values
for the XGBoost model. The parameters max_depth, gamma, subsample, colsample_bytree
and min_child_weight are optimized in a second step applying a grid search approach. For the
parameters to be optimized, the following values are considered, mostly based on (Huang, Pouls,
Meyer, & Pauly, 2020) and requiring the estimation of 11,000 models:

• max_depth ∈ {3,8,13,18,23,28,33,38}

• gamma ∈ {0,0.05,0.1,0.15,0.2}

• subsample ∈ {0.5,0.6,0.7,0.8,0.9}

• colsample_bytree ∈ {0.5,0.6,0.7,0.8,0.9}

• min_child_weight ∈ {0,10,20,30,40,50,60,70,80,90,100}

XGBoost itself does not account for spatial interdependence. Therefore, a GWR is calculated
on the geo-referenced predictions made by an XGBoost model to create smoother predictions,
following the approach of (L. Li, 2019). The predictions determined by the GWR are the final
predictions of the geographically weighted XGBoost.
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Figure 1: Spatial distribution of the number of trips per grid cell in the test dataset.

3. RESULTS AND DISCUSSION

On average, 8.52 trips per grid cell could be observed. There are several upper extreme values and
the distribution of observed values is right-skewed: The maximum number is 329 and for 3,218
of 8,955 grid cells, 0 trips were observed. In Figure 1, the spatial distribution of trips in the test
dataset is displayed. Trips appear to be clustered in certain parts of the study area, especially in
the city center, while cells with no trips seem to concentrate on the outer areas. The independent
variables chosen in this study (see Table 1) exhibit sufficiently low correlations. Most of them lie
between -0.2 and 0.2, a majority even between -0.1 and 0.1.

Parametric model

In the following, the results of the modeling using a Tweedie GAM are presented. To choose
an adequate value for the number of basis dimensions k for each variable, multiple models are
estimated starting with k = 3. k is successively increased until sufficient. Then, variables that are
insignificant in the model, have low effective degrees of freedom (edf) values < 1 and/or where a
partial influence plot shows a straight line at 0, are excluded from the model. After this process,
the following variables were removed: FNP 1, FNP 4, FNP 9, FNP 11, FNP 16, FNP 18, FNP 21,
healthcare facilities, schools, kindergartens, museums, event venues, libraries, public institutions,
sports facilities, hotels, places of worship, playgrounds, shared flats, 0-17 years, 30-49 years and
50-64 years.

The parameters estimated for the selected variables in the Tweedie GAM are specified in Table 2.
For smooth terms, edf indicating the complexity of a smooth and test statistics used in an ANOVA
test to test the significance of the smooth are displayed. The reference degrees of freedom (ref.df)
used in computing test statistics represents k− 1. F and the corresponding p-value represent the
results of the ANOVA test.

The predictions generated by the Tweedie GAM are displayed in Figure 2. The structure seems to
be similar to Figure 1, indicating a good model performance.
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Table 2: Estimate, Std. error, t value and p-value for the intercept and edf, ref.df, F
and p-value for all variables included in the model as smooth terms.

Variable Estimate Std.error t value p-value
Intercept 0.53 0.02 27.85 <0.01

Variable Edf Ref.df. F p-value
FNP 0 3.21 9.00 4.56 <0.01
FNP 2 5.43 9.00 5.05 <0.01
FNP 3 1.45 9.00 1.36 <0.01
FNP 8 2.00 9.00 0.98 <0.01
FNP 12 6.56 9.00 8.03 <0.01
FNP 13 4.13 9.00 4.27 <0.01
FNP 15 1.76 9.00 3.39 <0.01
FNP 17 3.92 9.00 6.48 <0.01
Buildings 6.52 9.00 10.32 <0.01
Tourist attractions 0.95 2.00 9.10 <0.01
Shops, food outlets, bars 8.54 14.00 10.45 <0.01
University 7.48 9.00 8.46 <0.01
Arterial road 5.85 9.00 2.99 <0.01
Bus 7.07 9.00 21.94 <0.01
Light rail 12.01 14.00 22.24 <0.01
Water 5.63 9.00 3.40 <0.01
Green spaces 5.89 9.00 9.45 <0.01
Population 2.40 9.00 14.59 <0.01
18-29 years 2.91 9.00 4.06 <0.01
x- and y-coordinate 215.10 399.00 3.65 <0.01

XGBoost

The two objectives count:poisson and reg:tweedie are both included in the tuning process
to determine the one leading to a better fit. As the Poisson model leads to much smaller values
of the average root mean square error (RMSE) in the grid search, this distribution is chosen.
Tuning is aimed at minimizing the RMSE for the training data, resulting in RMSE = 2.97 and
symmetric mean absolute percentage error (sMAPE) = 0.19 for the test data. This process leads to
the following parameters for the Poisson model: max_depth= 33, gamma= 0, subsample= 0.9,
colsample_bytree= 0.5, min_child_weight= 0, nrounds= 57. Additionally, the parameter
early_stopping_rounds is set to 10, causing the model training to stop if the RMSE has not
improved in the last 10 rounds.

In the next step, a GWR is estimated using the predictions generated in XGBoost as input val-
ues, leading to a bandwidth of 51.45 [m]. The predictions generated by geographically weighted
XGBoost lead to a higher RMSE = 3.72 and sMAPE = 0.24. Their spatial structure is displayed
in Figure 3. The geographically weighted XGBoost leads to smoother predictions that appear
comparable to the predictions generated by the Tweedie regression. Therefore, the more natural
fit of a geographically weighted XGBoost comes at the expense of a decrease in the accuracy of
predictions.
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Figure 2: Predictions of bike-sharing trip counts determined by a Tweedie GAM.
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Figure 3: Predictions of bike-sharing trip counts determined by geographically
weighted XGBoost.
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Table 3: RMSE, sMAPE and computation time.

Tweedie GAM XGBoost Geographically weighted
XGBoost

RMSE 6.58 2.97 3.72
sMAPE 0.33 0.19 0.24
Computation time 1:50:46.44 h 0:00:02.40 h 0:03:55.77 h
Hyperparameter tuning - 3:23:32.56 h -

Comparison

Both XGBoost models lead to much smaller values than the parametric approach (see Table 3).
In addition, the estimation of a single XGBoost model takes far less time than the estimation of a
GAM with the selected dataset and settings. Still, it has to be considered that for an optimal model
fit, tuning is necessary when estimating an XGBoost model requiring much more time.

Both methods allow to flexibly adapt to the dataset and to incorporate non-linear relationships or
interactions, either using splines or regression trees. This advantage comes at the cost of a more
complex model definition. Therefore, both modeling approaches’ flexibility can be rated similarly.

Regarding interpretability, parametric methods are to be preferred as the modeling output usually
gives a clear indication of each parameter’s influence. Still, in a GAM, additional means such
as partial effect plots are required to interpret the relationship between the dependent and the ex-
planatory variables. The same applies to XGBoost. Here, importance plots allow an interpretation
regarding the strength of each variable’s influence on the decision-making process of the model.
Still, this method does not allow to determine the direction of the relationship and to perform
hypothesis tests. In comparison, the interpretation of XGBoost is somewhat limited.

An advantage of XGBoost over parametric models is its scalability which allows the application
of one model for a wide range of datasets. In contrast, the choice of an adequate parametric model
structure is necessary when using a parametric model to adapt to specific datasets and distributions
of the response variable. As this research only deals with the modeling of one dataset, this is not
further demonstrated but can be deducted from the model structure of XGBoost and its application
in previous studies.

In this research, especially the ability of each model to deal with spatial autocorrelation is of
interest. The interaction between the x- and y-coordinate is included in the GAM through a spline
modeling an interaction term. This allows to interpret the relation of the dependent variable to the
locations in space. In XGBoost, x- and y-coordinates are included separately as regular variables.
To incorporate spatial relationships, an additional GWR is performed. The option to directly
include spatial information in the model estimation is an advantage of GAMs in comparison to
XGBoost. Additionally, if coordinates are included in XGBoost, it is crucial to adopt settings that
prevent the model to fit exclusively to the coordinates.

In total, both methods entail specific qualities that set them apart from the other but no method can
be clearly preferred. Instead, models should be chosen depending on the priorities of the research.
XGBoost succeeds at estimating extremely accurate predictions and should be applied whenever
this is the aim of the research. Regarding computation time, XGBoost allows to create good pre-
dictions in an extremely short amount of time when omitting the hyperparameter tuning process.
When there is a focus on model interpretation, GAMs offer considerably more information. Ad-
ditionally, GAMs offer a better way to deal with the requirements of spatial autocorrelation.
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4. CONCLUSIONS

In this analysis, a GAM based on a Tweedie distribution and a geographically weighted XGBoost
were applied on a spatial dataset containing the numbers of observed bike-sharing trips within
100x100 m grid cells.

XGBoost results in lower values of the RMSE and sMAPE. This leads to the conclusion that, only
regarding predictive accuracy, XGBoost should be preferred. Nevertheless, parametric models
entail certain advantages that should be considered: the results offer an easier interpretation and
spatial coordinates can be directly included in the model estimation.

As the explanatory variables assume the same values both in the training and in the test dataset,
the resulting RMSE and sMAPE may be too low and should not be compared to other studies.
Still, both methods were applied on the same dataset which means that the comparison of methods
within this study is still valid.

In future research, variable selection could be performed to create smaller models. Also, an exten-
sion to include other methods, especially machine learning approaches could broaden the scope of
this research.
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