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SHORT SUMMARY

This study proposes a novel method to improve the estimation of hourly bicycle flow. The specific model
employed is a Long Short-Term Memory Mixture Density Network (LSTMMND). This model presents
the additional upside approximates a distribution of cycling flow conditional on the input data and hence
addresses potentially unobserved heterogeneity. In a case of city-wide bicycle flow in Copenhagen, the
LSTMMDN yielded ∼ 75% more accurate bicycle flow estimates than the calibration-based approach cur-
renty used by transport agencies. The paper further quantifies the improvement of accident analyses brought
on by the improved bicycle volume measures. The LSTMMDN estimates result in an improved model fit in
a crash model, compared to other estimates for bicycle exposure, with all other variables unchanged. Over-
all, the results strongly indicate that investing in more advanced methods for bicycle volume estimation will
benefit the quality of performance measures related to bicycle issues computed by transport agencies.

Keywords: Aggregation Bias, Bicycle crash risk, Bicycle volume estimation, Deep learning, Long Short-
Term Memory Mixture Density Network

1. INTRODUCTION

In the past decades safety engineers, transport agencies, and researchers have investigated various aspects
of bicycle accidents to identify the factors associated with bicycle crash risk (Aldred et al., 2018; Dozza,
2017; Janstrup, Møller, & Pilegaard, 2019; Rossetti et al., 2018; Twisk & Reurings, 2013; Vandenbulcke,
Thomas, & Int Panis, 2014), and injury outcome(Fountas et al., 2021; Kaplan, Vavatsoulas, & Prato, 2014;
Myhrmann, Janstrup, Møller, & Mabit, 2021) to make informed mitigating efforts and improve the safety
of cycling. However, many such investigations do not account for the cyclist exposure in relation to the
factors investigated (Dozza, 2017; Vandenbulcke et al., 2014).

An issue investigating risk factors in relation to bicycle traffic is the general lack of bicycle flow data. To
address this issue, transportation agencies use calibration factors applied to the annual average daily cycling
traffic (AADCT) or annual average weekday cycling traffic (AAWCT) in order to obtain reasonable hourly
volume profiles, (Schrank, 2021). However, the estimates derived from calibration factors do not reflect
variations in traffic external factors such as weather and bank holidays. This presents a significant issue
considering the impact weather and other factors have on cyclist ridership (Böcker, Dijst, & Prillwitz, 2013;
Nankervis, 1999; Nosal & Miranda-Moreno, 2014).

Detailed traffic flow data is essential to provide the most accurate accident analyses (Norros et al., 2016), and
there is a need for improved hourly bicycle volume estimates based on the limited data sources available.

In order to benefit the work of traffic agencies concerning the computation of performance indicators and
safety analyses conducted by safety engineers, this study is concerned with estimating historic hourly bicy-
cle estimates, similar to Sekuła et al. (2018). The current study focuses on improving the hourly estimates
of bicycle volumes derived from mean daily measures, the estimation of which are the focus of recently
developed large scale models (Aled Davies, 2017; Kjems & Paag, 2019). As such, the model in this study
contrasts short-term traffic flow forecasts. The model should estimate historic bicycle flow unconditional
of previous traffic flow, where only the mean-expected daily traffic is available.

Several current state-of-the-art approaches for estimating traffic flow use some variation of the Long Short-
Term Memory (LSTM) neural network (Hochreiter & Schmidhuber, 1997). This statistical framework has
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been adopted in many recent studies forecasting short-term traffic states/flow (Chen et al., 2016; Cui et al.,
2020; Duan, Lv, & Wang, 2016; Ma et al., 2015; Zhao et al., 2017).

To overcome the shortcomings of the calibration-based method, this study explores the use of a novel neural
network approach to estimating hourly bicycle volumes conditional on weather conditions, temporal effects
and road conditions. The method is a hybrid of an LSTM and a Mixture Density Network (Bishop, 1994).
This hybrid introduces a Gaussian mixture model extension to the traditional LSTM, enabling the model to
estimate a conditional bicycle flow distribution in contrast to the traditional conditional mean estimation.
Furthermore, the LSTMMDN improves the estimation of the hourly bicycle volumes by treating them
as random draws from a distribution, thus introducing variation across the network even on measurably
similar roads. Finally, we illustrate how the improved bicycle flow estimates can improve accident analyses
conducted to create a safer cycling environment.

2. METHODOLOGY

In this section we describe the LSTMMDN framework used to derive the conditional bicycle flow distribu-
tion for this study along with the specific setup used in the investigation of the Copenhagen use-case.

LSTMMDN

The LSTMMDN is variation of the classical MDN presented in Bishop (1994), relying on an LSTM
(Hochreiter & Schmidhuber, 1997) to estimate the mean, average and mixture coefficient, conditional on
the input data X and a Gaussian Mixture Model (GMM) output, which is used to approximate the city-
wide bicycle flow distribution. The conditional density computed in the output layer of the LSTMMDN is
described in Equation (1)

p(y|X) =
A

∑
i=1

αi(X)
1

νi(x)1/2 e
− (t−µi(x))

2

2νi(x)2 (1)

where A is the number of mixture components, αi(X) are the mixing coefficients dependent on the input
data, µi(x) is the centre of the kernel, i.e. the conditional average, and νi(x) the associated variance. The
benefit of the Mixture Density type Network for estimating city-wide hourly bicycle flow is derived from
it approximating a conditional density function for the hourly bicycle flow. This allows for bicycle flow
estimates to vary across different road sections, even in under equal measurable conditions, as all estimates
are treated as draws from the conditional density function. This further addresses unobserved heterogeneity
in hourly bicycle flow estimates.

Substituting the artificial neural network (ANN) in the traditional MDN proposed in Bishop (1994) is moti-
vated by the LSTMs superior capability of handling nonlinear time series problems (Hochreiter & Schmid-
huber, 1997). The LSTM learns to represent temporal data by introducing a memory cell and sub-processes,
referred to as gates. There are three such gates in the LSTM cell: the input gate, the forget gate, and the
output gate. The gates each handle different tasks, involving what information to keep from the previous
cell state, what new input to consider, and which to include in the cell state. In Figure 1 there is a visual
illustration of the LSTM cell layout, and the computations performed in the LSTM cell for each time step
in the temporal sequence are shown in Equations (2) to (7).

ft = σ(Wf xxt +Wf hht−1 +b f ) (2)
it = σ(Wixxt +Wihht−1 +bi) (3)

C̃t = tanh(WCxxt +WChht−1 +bC) (4)

Ct = ft ×Ct−1 + it ×C̃t (5)
ot = σ(Woxxt +Wohht−1 +bo) (6)
ht = tanh(Ct)×ot (7)

1https://upload.wikimedia.org/wikipedia/commons/3/3b/The_LSTM_cell.png
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Figure 1: Graphical illustration of LSTM cell structure1: Orange squares mark layers with
respective activation functions, yellow circles mark point wise operation, where x and + icons
indicate respective element-wise multiplication and addition of tensors in the LSTM cell.

Here σ(·) and tanh(·) are the respective activation functions, Wf x,Wf h,Wix,Wih,Wox,Woh,WCx and WCh are
the weight matrices of the respective gates ft , it ,ot and the memory cell Ct , in the LSTM cell. b f ,bi,bo and
bC are intercept/bias terms of the respective gates, and ht represents the hidden state at the time step t.

The LSTMMDN is estimated using back-propagation (Hastie, Tibshirani, & Friedman, 2009) in order to
minimise the negative log-likelihood loss function in Equation (8).

logL (Θ) =
1
N

N

∑
j
− ln{

A

∑
i=1

αi(X j)φi(y j|X j)} (8)

Model configuration

Figure 2: Graphical illustration of the LSTMMDN setup used in the study.

A visualisation of the LSTMMDN applied in this study is shown in Figure 2. It is configured using the
activation functions described in Equations (2) to (7), various setups of k hidden neurons in each gate, and
an internal dropout rate of 20% dropout in the LSTM cell (Srivastava et al., 2014). Meanwhile, we use
a linear a(x) = x in the output layer. The Mixture output layer itself we set up to consist of A mixtures,
thus receiving input from A× 3 nodes from the networks output layer shown in Figure 2. Finally, model
estimation/training is done using the Adaptive Moment Estimation (Adam) algorithm (Kingma & Ba, 2015),
using a training data set comprised of 70% of the total data. To avoid over-fitting the model, we implement
an early stopping criteria such that the iterative optimisation of the model does not improve over L = 100
iterations when evaluated on a validation set comprised of 10% of the total data, not in the training data.
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Minor headings

New paragraphs are not indented, but are preceded by a line of space. Also, please avoid using footnotes or
splitting tables over two (or more) pages.

3. RESULTS

Data and experimental setup

The case studied in this paper, is that of bicycle flow in Copenhagen in the period 2017-2020. The LSTM-
MDN is trained and evaluated using aggregated hourly bicycle volumes reported from bicycle monitoring
stations in Copenhagen from 2017-2020, weather data provided by the Danish Meteorological Institute
(DMI) and information on the Danish bank holidays. A total of 37 bicycle monitoring stations were active
in the period. These are marked by the blue dots in Figure 3. The 37 stations showed considerable vari-
ation in active monitoring days, ranging from 9-731 days, with the median number of active days being
40. Overall, a total of 64,664 hourly bicycle volumes were recorded in the period. For each year, for each
monitoring station, and Annual Average Weekday Cycling Traffic estimate is included in the data reports.

DMI weather data for Copenhagen in the period 2017-2020 was recorded at the main weather station lo-
cated at the green dot in Figure 3 and obtained using their Open Data API (DMI, 2021). The variables
considered in the model are 10-minute averages of the air temperature, pressure, wind speed, wind gusts,
wind direction, precipitation levels, visibility and snow volume.

Finally, we include temporal data such as hour of the day, day of the week, week of the year, and whether
days are public holidays, as this would be assumed to strongly influence cyclist ridership.

In total, the data consist of 64,664 observations of hourly bicycle volumes and ≈ 388,000 weather and
temporal measurements at 10-minute intervals. The hourly aggregated bicycle volumes reported at each
station are used as response variables to train the model, while the AAWCT at the monitoring station, 10-
minute weather data and holiday status of a day are used as predictors. The 10-minute interval predictors
xxxt are grouped such that a sequence of six 10-minute interval observations xxxt are paired with the matching
response (i.e. the accumulated bicycle volume of the hour) as shown below.

yT (XXXT ) : XXX t =


xxxt1
xxxt2
xxxt3
xxxt4
xxxt5
xxxt6

=


(x1,t1,x2,t1, ....,xD,t1)
(x1,t2,x2,t2, ....,xD,t2)
(x1,t3,x2,t3, ....,xD,t3)
(x1,t4,x2,t4, ....,xD,t4)
(x1,t5,x2,t5, ....,xD,t5)
(x1,t6,x2,t6, ....,xD,t6)

 (9)

Where t1, t2, t3, t4, t5, t6 indicate the first to sixth 10-minute intervals of the input sequence matching the
aggregated hourly cycling volume, T indicates the full hour considered, and D is the number of predictors
used.

Bicycle flow estimation

We assess the LSTMMDN’s performance and compare it against 1) other neural network architectures and
2) the profiling method based on calibration factors currently employed by the Danish road directorate (the
Seasonal Variation Factors, SVF), using a test data set containing the remaining 20% of the total data.

Four models for the estimation are being compared in various setups, the ANN setup proposed in Sekuła
et al. (2018), LSTMs and LSTMMDNs in various setups, and the SVF-based method used by the Danish
government.

The performance measures are the average mse (m̂se) and the average negative log-likelihood (− logL̂ )
of 100 posterior draws from the LSTMMDN, the mse of the conditional average (mseµ , and the negative
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Figure 3: Map of the measurement stations and weather stations in Copenhagen

log-likelihood of the conditional average and (− logLµ ) for all models (also using 100 posterior draws
from the LSTMMDN).

The results are shown in Table 1.

Table 1: Goodness-of-fit measures related to various LSTMMDN structures and the SVFs,
determined on the test data.

model specification − logLµ − logL̂ MSEµ
ˆMSE Trainable parameters

ANN: (Sekuła et al., 2018) 5772 - 0.108 - 162,025
LSTM: L(k = 32) 5851 - 0.129 - 6,561
LSTM: L(k = 64) 5792 - 0.114 - 21,313
LSTM: L(k = 32)×6 5832 - 0.128 - 6,733
LSTM: L(k = 64)×6 5777 - 0.110 - 21,645
LSTMMDN: L(k = 32)×G(A = 6) 5805 5929 0.119 0.226 7,122
LSTMMDN: L(k = 32)×G(A = 8) 5811 5933 0.121 0.234 7,320
LSTMMDN: L(k = 64)×G(A = 6) 5753 5864 0.102 0.195 22,418
LSTMMDN: L(k = 64)×G(A = 8) 5777 5872 0.109 0.201 22,808
SVF method 6570 - 0.377 - -

As we see in Table 1, the LSTMMDNs outperforms its counterpart LSTMs in similar setups, i.e. the same
number of LSTM nodes k and similar output dense layer. The best performing LSTMMDN setup has
k = 64 computational nodes in each LSTM gate and A = 6 mixtures to describe the city-wide cycling flow
distribution. This model also proves superior to the model the ANN model from Sekuła et al. (2018), while
one having 1/8 of the estimable parameters. As seen in Table 1 all LSTMMDNs are superior to the SVF
calibration method employed by the Danish road directorate. Based on the MSEµ we see that that the best
LSTMMDN produces ∼ 75% more accurate bicycle flow estimates than the calibration-based method.

In comparing the LSTMMDN and SVF calibration approach further, we only use the best LSTMMDN
(LSTMMDN: L(k = 64)×G(A = 6)) and refer to this as the LSTMMDN.

LSTMMDN vs. SVF-calibration method

We see the the hourly bicycle flow estimates from the LSTMMDN superiority over the SVF-calibration
method when visualised in an estimated vs. actual flow heat plot in Figure 4. The estimates produces by
the LSTMMDN are much closer to the 45◦ line establishing a x = y relation. Furthermore, it is evident that
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the calibration method has a tendency to overestimate the hourly bicycle flow.

Figure 4: Heat maps comparing the prediction accuracy of the SVF method (left) and the
LSTMMDN method (right) based on the reserved test data set.

Lastly, we show a continuous week of standardised hourly bicycle flow estimates for an arbitrary count-
ing station during an arbitrary week in Figure 5. Here we see the actual hourly bicycle flow (blue), the
LSTMMDN estimates (orange) and the calibration-based estimates (green). As expected, the LSTMMDN
estimates follow the observed bicycle flow during this period much more better than the calibration-based
estimates, representing peak traffic and weekend traffic much better. The most significant difference be-
tween the LSTMMDN and the calibration-method in Figure 5 is the discrepancy of the calibration method
to estimate the traffic at weekends accurately.

Figure 5: Visualisation of the standardised bicycle flow over 148 continuously registered
hours from a randomly picked counting station. Blue: Actual counts of bicyclists from ran-
dom counting station, orange: LSTMMDN traffic counts estimation of the same road section
and week and time: SVF based estimation of same road section and time.

Impact of bicycle exposure on bicycle accident analyses

Cyclist safety analysis is a topic that concerns transport agencies which could benefit significantly from
improved bicycle flow estimates.

We exemplify this by estimating three separate city-wide bicycle crash frequency models for Copenhagen
between 2017 and 2020, only varying the exposure variable. The considered exposure variables are,
AAWCT, the calibration based hourly flow estimates or the LSTMMDN hourly flow estimates. To esti-
mate the city-wide crash frequency, we use a simple Poisson regressions. While it is not the most advanced
model type, it should be sufficient to illustrate the effect of various exposure variables.

We consider for the response variable the aggregated number of bicycle crashes in Copenhagen during
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any given hour in the period 2017-2020, and consider the following exogenous variables: Visibility [m],
Temperature < 0◦C, Temperature > 20◦C, Morning peak hours (7-9 weekday), Afternoon peak (15-17
weekday), Wind speed < 5m/s, Wind speed > 9m/s, Precipitation (> 0mm), Bank holidays, Bicycle flow.

The cyclist exposure is estimated hourly at each of the counting stations in Figure 3 given the AAWCT,
weather and temporal information for the period 2017-2020, using respectively the calibration method and
LSTMMDN. The estimates are then aggregated to approximate the city-wide cyclist exposure at any given
hour. The AAWCT exposure is divided to approximate the annual average hourly cycling traffic.

Due to missing observations in the weather data, the weather, and therefore bicycle flow estimates, in the
period 2017-2020 becomes imbalanced with an over-representation of summer days. Therefore, stratified
bootstrapping is performed to sample three full years of estimated bicycle flow and weather data from
the four years of data, conditional on the year’s month, day, and daytime. The three years bootstrap data
includes 2104 bicycle crashes in 26,232 hours, meaning 0.08 accidents per hour. Summary statistics of the
data used in the bicycle crash frequency model are shown in Table 2.

Variable Mean
Visibility 27,519 m

Bank holiday 0.034
Exposure(LSTMMDN) 5430 cyclists/hour

Exposure(Exposure) 6051 cyclists/hour
Exposure(AAWCT) 6079 cyclists/hour

Morning Peak/ Afternoon peak 0.089
Temperature < 0◦C 0.032
Temperature > 20◦C 0.075
Wind speed < 5m/s 0.102
Wind speed > 9m/s 0.008
Precipitation > 0mm 0.429

Table 2: Summary statistics of the data used in the Poisson model

The three models are estimated using Maximum Likelihood estimation, and the resulting parameter esti-
mates and goodness of fit measures are shown in Table 3.

Model 1 (AAWCT based exposure) Model 2 (SVF-calibration based exposure) Model 3 (LSTMMDN based exposure)
No. Obs 26,232 26,232 26,232
Estimated parameters 10 10 10
log-likelihood −7,142 −6,874 −6,740
Deviance 10,287 9,750 9,483
χ2 27,524 27,704 29,810

Parameter estimates p-value Parameter estimates p-value Parameter estimates p-value
Variables
Intercept −23.390 < 0.001 −7.958 < 0.001 −10.740 < 0.001
Visibility (for one log change) 0.071 0.029 −0.068 0.037 −0.062 0.055
Bank Holiday −0.857 < 0.001 −0.809 < 0.001 −0.096 0.609
log(Exposure) 2.267 < 0.001 0.697 < 0.001 1.006 < 0.001
Morning peak 1.098 < 0.001 0.210 0.002 0.247 < 0.001
Afternoon peak 1.194 0.003 0.296 < 0.001 0.284 < 0.001
Temperature < 0◦C −0.512 < 0.001 −0.113 0.519 −0.027 0.877
Temperature > 20◦C 0.422 0.774 0.075 0.270 0.224 40.001
Wind speed < 5m/s −0.023 0.946 0.181 0.025 0.136 0.090
Wind speed > 9m/s −0.018 0.001 −0.058 0.824 −0.030 0.908
Precipitation 0.147 0.001 0.095 0.031 0.124 0.005

Table 3: Estimates for the Poisson regressions with varying exposure variables (AAWCT,
calibration based hourly cycling volume and LSTMMDN model based hourly cycling vol-
ume).

The goodness-of-fit measures clearly indicate that the model using LSTMMDN exposure estimates is the
superior of the models. The resulting log-likelihood is 5.5% higher in Model 3 than in Model 1. Having
only varied the exposure variable in the three models, this highlights that the exposure estimates used in
models have a substantial impact on the conclusions drawn.

Furthermore, the estimates in Table 3 reveal that conclusions regarding various variable impacts on the
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bicycle crash frequency would vary depending on which of the three model variations is employed. For
example both low temperatures and high wind speeds would lower the crash risk in Model 1, contrasting
the findings of the other two models.

4. DISCUSSION AND CONCLUSIONS

The current approach used by transport agencies to estimate hourly bicycle traffic relies on calibration fac-
tors that do not to account for weather and other factors’ impacts on cyclist ridership. This study aims to
amend this issue, proposing a LSTMMDN model to estimate city-wide hourly bicycle volumes in Copen-
hagen conditional on the mean-daily traffic, weather and temporal effects.

The proposed approach significantly outperforms the calibration factor method. Conditional on the model
setup, the LSTMMDN yields ∼ 75% more accurate estimates of the hourly bicycle volume in Copenhagen.
Furthermore, the method introduces a framework that allows for variation in the bicycle volume estimates
across the city network even under similar conditions and on measurably similar roads. This is achieved by
the model approximating a conditional distribution for the hourly bicycle volume instead of only approxi-
mating the conditional average.

The LSTMMDN generated bicycle flow estimates were subsequently used to quantify the improvements
that better exposure data can have on accident analyses. The results indicate that improving the accuracy of
bicycle volume estimates will result in better crash risk models.

On a side-note, the crash model and the variables used for those models are very simplistic and quantify
the impact that better bicycle volume estimates can have on the accident models that are crucial to making
informed decisions to increase cycling safety. Many studies investigate the factors related to bicycle crashes
and the outcomes thereof (Aldred et al., 2018; Fountas et al., 2021; Janstrup et al., 2019; Kaplan & Prato,
2013; Kim et al., 2007; Myhrmann et al., 2021; Schepers et al., 2020), and this study does not try to conduct
a deep risk analysis of bicycle crashes. Nevertheless, the results of the three Poisson regressions indicate
that the bicycle flow estimates affect the output. This result makes it plausible that the same would be the
case in more advanced models. However, a definitive clarification would require an in-depth analysis and
is the subject of future studies.

CONCLUSIONS

Overall, the impact of better cyclist exposure estimates is non-negligible, as revealed in a simple-crash risk
model comparison. The results revealed significant improvements by simply addressing the exposure esti-
mates used in the model, with all other variables held constant. Also, the interpretation of variables changed
in light of better exposure estimates hinting potentially at previously erroneous inference from crash risk
analyses caused by the lack of decent exposure estimates. And considering the recent development of
models to estimate daily cycling traffic in the city networks such as the Cynemon model for London and
COMPASS in Copenhagen, the model proposed out this study should be a welcomed extension in order to
optimally represent the hourly bicycle traffic conditional on the proposed mean-daily estimates and other
external factors.
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