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SHORT SUMMARY 

 
Currently, parameters for neither mode- nor route choice are available in terms of bike-sharing, 

resulting in a lack of knowledge to implement bike-sharing systems in transport demand models. 

Estimating such parameters is the aim of a stated preferences experiment on choices between 

shared bikes, public transport, and private motorized transport. Preliminary results of a 

multinomial logit model on a sample of 69 non-users and users of bike-sharing systems are 

presented. For all modes, travel costs have a negative effect on the associated utility of transport 

mode. Travel time shows a negative effect for all modes, while for shared bike and public 

transport access and egress time has a stronger effect than time in the vehicle. For bicycling, street 

type has no effect, while asphalt is the most preferred type of street surface. The utility of public 

transport is lower with higher utilized capacity. 
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1. INTRODUCTION 

 
Many publications on bike-sharing systems (BSS) present descriptive statistics on origin-destina-

tion matrices (Zhao et al., 2015), and user´s socio-demographics (Reck & Axhausen, 2021). In 

terms of mode and route choices there are studies available, which consider bikes (Börjesson & 

Eliasson, 2012; Caulfield et al., 2012; de Dios Ortuzar et al., 2000; Hardinghaus & Papantoniou, 

2020; Sener et al., 2009; Weis et al., 2021). However, none of them does consider shared bikes 

for which additional attributes as costs for the rent and time for accessing and egressing BSS 

stations are relevant. Following from that, there is a lack of data for demand model-based simu-

lations and predictions of ecological and transport-related effects of BSS. The proposed confer-

ence contribution addresses this gap by reporting a mode choice experiment and according em-

pirical behavioral parameters, which allow an implementation of station-based bike-sharing sys-

tems in macroscopic transport demand models. 

Whereas revealed preferences (RP) (Louviere et al., 2000; Train, 2009) reflect people’s actual 

choices in real-world situations, they include the disadvantage of being limited to existing alter-

natives and attributes and being subject to challenges of multicollinearity (Train, 2009). Since our 

mode-choice study is interested in e.g. the effect of transport prices and travel times with little 

variation, a stated preference (SP) experiment was created to collect people’s stated mode choices 

in hypothetical choice situations, which allows to include controlled variation in the attributes 

(Louviere et al., 2000; Train, 2009). To make the situations more realistic for the participants, the 

choice tasks were tailored individually based on RP data. The experiment considers the alterna-

tives bike sharing (BS), public transport (PT), and private motorized transport (PMT). The survey 

population includes BSS-users and -non-users. 
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2. METHODOLOGY 
 

Data 
 

BSS-users were recruited after renting a VRNnextbike, a BSS in the South-West of Germany 

(VRNnextbike, n.d.). When using the smartphone app, users were presented an invitation to par-

ticipate in a computer-assisted telephone interview (CATI) on their travel behavior and bike-rent 

habits. In the CATI survey, information on trip characteristics and purpose was collected, and the 

chosen route was traced via an online route planning tool (komoot, n.d.) to gather additional in-

formation such as travel time. The collected RP-data served as a basis for our mode choice exper-

iment. This follow-up survey was presented to BSS users, who agreed to participate in the SP 

study. Based on the reported route, trip characteristics for the alternatives modes PT and PMT 

were collected using an online routing provider (Google Maps, n.d.) and an electronic PT-sched-

ule service (VRN, n.d.). 

BSS-non-users were recruited from a sample of randomly generated phone numbers. As RP data 

are not available for this subsample, quasi RP data were employed, which are based on real BSS 

usage data provided by the VRNnextbike and discriminated for short, middle, and long trips. In 

this case, data on mode alternatives are based on information of the national travel survey in 

Germany (MiD, 2017), taking into account the differences between major and minor cities. To 

design a tailored questionnaire for this subsample, each respondent was assigned to a town size 

group, based on his or her postal address. Secondly, every participant was sequentially assigned 

to a trip length (small, middle, long) and a trip purpose (leisure or mandatory activity such as 

work). Based on this approach, calculated quasi RP values were assigned to the participants as 

basis for the variation in the SP-experiment. 

For both, BSS-users and BSS-non-users, the SP questionnaire was created by varying the mode-

specific characteristics in accordance to a predefined experimental design. The participation in 

the study was restricted to adults (18 years and older) owning a driver's license to make the alter-

native PMT realistic. The individually tailored questionnaires were created within one week after 

recruitment, printed, and sent via postal mail to the participants. After four weeks of non-response, 

reminders were sent with a copy of the questionnaire. An incentive of 20€ was provided to the 

respondents after returning the filled-out survey instrument.  

 

Experimental design 

 
As reported above, the SP experiment employs three transport modes (BSS, PMT, PT), which are 

provided as labelled alternatives (Louviere et al., 2000; Rose & Bliemer, 2014) to the respondents. 

Mode-specific attributes were selected by referring to previous research (Axhausen et al., 2008; 

Börjesson & Eliasson, 2012; Hardinghaus & Papantoniou, 2020; Weis et al., 2021) and evaluated 

in expert interviews. All continuous attributes were varied relative to the RP data, while levels of 

categorical variables (BS: street type, surface type; PT: utilized capacity) were determined by the 

experiment design. Hereby, certain constraints had to be met: The arterial road was never pre-

sented together with macadam surface. A scheme of the mode-specific attributes and their varia-

tion is presented in Table 1.  

To find a design with small standard errors of parameter estimates as possible, an efficient design 

(Rose & Bliemer, 2009, 2014) was created employing the software Ngene (ChoiceMetrics, 2018). 

The design resulted in 60 choice tasks split into six blocks. Each participant was assigned to one 

block and thus asked to complete ten choice tasks. 

In the questionnaire, a detailed description of the task and attribute levels was provided to ensure 

equal understanding across all participants. For the same reason, pictures visualized the three 

levels of utilized capacity in PT (middle, high, overloaded) as suggested by Weis et al. (2021) are 

shown in Figure 1. An example for a choice task is presented in Figure 2. 
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Table 1. SP experiment: mode-specific attributes and variation of levels 

mode attribute levels / variation of reference values 

BS 

access & egress time -50% / -10% / +40% 

travel time (TT) -30% / -10% / +30% 

travel costs -100% / -35% / +20% 

street type cycleway / side street / arterial road 

surface type asphalt / cobblestones / macadam 

PMT 

travel time (TT) incl. parking search -20% / -10% / +30% 

fuel costs -50% / +150% / +200% 

parking costs -50% / +100% / +200% 

PT 

access & egress time -50% / -10% / +40% 

travel time (TT) -30% / -10% / +30% 

travel cost -100% / -35% / +20% 

utilized capacity middle / high / overloaded 

 

 

middle high overloaded 

   

Figure 1. SP questionnaire: Visualization of utilized capacity in PT (Weis et al., 2021) 

 

 

 

Figure 2. Choice task example 
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Model specification 
 

Discrete choice data, where respondents choose between a limited number of alternatives, are 

commonly analysed by applying random utility maximization (RUM) theory. The theory assumes 

rational behavior in which respondents choose the alternative with the highest utility (Adamowicz 

et al., 1994; Louviere et al., 2010; Mariel et al., 2021; Train, 2009). Namely, an individual n faced 

with J alternatives in T choice tasks associates an indirect utility Unjt for an alternative j in a choice 

task t and chooses the alternative with the highest utility. The utility of an alternative j is therefore 

decomposed as  
 

 𝑈𝑛𝑗𝑡  =  𝑉𝑛𝑗𝑡  +  𝜀𝑛𝑗𝑡  =  𝑥′𝑛𝑗𝑡𝛽 +  𝜀𝑛𝑗𝑡  (1) 

 

where Unjt is not observed, but Vnjt is the deterministic utility of alternative j, and 𝜀njt is a random 

component not included in Vnjt. The deterministic utility Vnjt can be specified by the term 𝑥′njt𝛽, 

where 𝑥 is a vector of explanatory variables (e.g. attribute levels), and 𝛽 are the corresponding 

coefficients to be estimated. 

In this SP study, J=3 labelled alternatives (shared bike, car, public transport; see Figure 2) are 

described by K=3 to 5 attributes (see Table 1). For each alternative, a utility function (𝑉𝑛𝑗𝑡) was 

specified, whereby the alternative-specific attributes were included in the equation as explanatory 

variables. When specifying the utility function, it is important to understand that “only the differ-

ences in utility matter”, while the “scale of utility is arbitrary” (Train, 2009, p. 19). Therefore, to 

capture the differences in the utility of the alternatives, J-1 alternative-specific constants (ASC) 

were specified, whereby the estimated ASCs are interpreted relative to the omitted alternative, 

which is normalized to zero (Ben-Akiva & Lerman, 1985; Train, 2009). For the categorical at-

tributes street type, surface type, and utilized capacity, the L levels of each attribute were trans-

formed into L-1 dummy variables. This means, the utility for one level per attribute is normalized 

to zero and serves as reference category, while the parameter estimates for the L-1 dummy varia-

bles capture the utility differences to this reference category (Louviere et al., 2000; Mariel et al., 

2021; Train, 2009). Since only the difference in utility matters, the choice of the reference cate-

gory is arbitrary (Train, 2009). 

 

3. RESULTS AND DISCUSSION 
 

A multinomial logit model (MNL) (Ben-Akiva & Lerman, 1985) was estimated in R (Hess & 

Palma, 2019; R Core Team, 2020) on the data of 690 observations (choice tasks) from 69 indi-

viduals. The results are presented in Table 2. It has to be kept in mind that the survey is still in 

the field and the presented results are preliminary. Additional information will have an impact on 

the significance of the results. 

The estimated ASCs show the differences in utility for the mode alternatives, whereby BS was 

chosen as the reference category. The utility of PMT is lower than for BS (β=-1.392, 

t-value= -2.660), while it is higher for PT (β=0.754, t-value=1.544). 

For BS, both, access and egress time to the bike station (β=-0.220, t-value=-7.455) and travel time 

with the bike (β=-0.125, t-value=-7.614) have a negative utility to the respondent, whereby the 

negative effect is larger for access and egress time than for cycling time. This was expected as 

ride-times in or on a vehicle are often considered less negative than waiting or access and egress-

times (see Weis et al., 2021). Also travel costs show a negative utility (β=-0.616, t-value=-6.667). 

The data does not support any differences in utility for the street type, since relative to the refer-

ence category arterial road, the estimates for side street (β=-0.255, t-value=-0.956) and cycleway 

(β=-0.012, t-value=-0.046) are not significantly different from zero. Relatively to macadam sur-

face, cobblestones do not show differences in utility (β= -0.203, t-value=-0.810), while asphalt is 

a more preferred surface type, but the effect is also not significant (β=0.400, t-value=1.556). 
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For PMT, travel time (β=-0.116, t-value=-4.872), fuel costs (β=-0.727, t-value=-3.342), and park-

ing costs (β=-0.573, t-value=-7.047) have a negative utility for the participants. 

For PT, similar to the alternatives BS and PMT, travel time shows negative utility for both, access 

plus egress time (β=-0.249, t-value=-6.715) and time in vehicle (β=-0.147, t-value=-6.108). 

Again, as for BS, access and egress time has a larger negative effect than travel time in the vehicle. 

A negative utility is also true for travel costs (β=-0.825, t-value=-6.715). With reference to a 

middle utilized capacity, higher utilized capacity results in utility loss (negative effects). Namely, 

an overloaded level of utilized capacity (β=-1.509, t-value=-5.505) shows a larger difference in 

utility to the middle level than high utilize capacity (β=-1.264, t-value=-4.720).  

The estimated model shows an adjusted rho-squared (ρ2) of 0.37, which can be considered as a 

quite good model fit (Ben-Akiva & Lerman, 1985; Louviere et al., 2000; Train, 2009)).  

 

Table 2. MNL estimation results for the three modes shared bike, car, and public transport 

mode attribute level estimate t-ratio 

 ASC (shared bike) reference 

 ASC (car) -1.392 -2.660 

 ASC (public transport) 0.754 1.544 

BS access & egress time [min] -0.220 -7.455 

TT cycling [min] -0.125 -7.614 

travel costs [€] -0.616 -6.667 

street type  

arterial road reference 

side street -0.255 -0.956 

cycleway -0.012 -0.046 

surface type  

macadam reference 

cobblestone -0.203 -0.810 

asphalt 0.400 1.556 

PMT TT total [min] -0.116 -4.872 

fuel costs [€] -0.727 -3.342 

parking costs [€/hour] -0.573 -7.047 

PT access & egress time [min] -0.249 -6.715 

TT in vehicle [min] -0.147 -6.108 

travel costs [€] -0.825 -9.390 

utilized capacity  

middle reference 

high -1.264 -4.720 

overloaded -1.509 -5.505 

n = 69 individuals; n = 690 observations 

Log Likelihood (0) = -758.0425; Log Likelihood (final) = -460.6758 

ρ2 = 0.3923; adjusted ρ2 = 0.3699 
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4. CONCLUSIONS 
 

At this stage of analysis, it is important to mention that the survey is still in the field. Therefore, 

conclusions will be derived after running the model on the full sample when the fieldwork is 

completed. All effects, however, show in the expected direction and are plausible in their size. 

Updated results will be presented at the conference. 

In further steps, this study aims to estimate an MNL model with the inclusion of socio-de-

mographics, estimation of willingness-to-pay for the alternative attributes, and value of travel 

time savings. Moreover, following the segmentation approach (Ben-Akiva & Lerman, 1985) and 

previous research on mode choice (Weis et al., 2021), separate models will be estimated for dif-

ferent trip purposes. After that, the estimated parameters will be implemented into transport be-

havior models, and scenarios for the development of BS, MPT, and PT usage will be outlined. 
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