
Extension of the Hyper Run Assignment Model to real-time passengers forecasting
in congested transit networks based on count data.

Lory Michelle Bresciani Miristice*1, Guido Gentile1, Daniele Tiddi2, and Lorenzo
Meschini2

1DICEA, University of Rome La Sapienza, Via Eudossiana 18, Rome, Italy
2PTV Group SISTeMA, Via Spallanzani 14, Rome, Italy

SHORT SUMMARY

Recurrent and non-recurrent congestion phenomena increasingly affect densely interconnected
transit networks. In particular, the measures adopted to contain the spread of the COVID-19
pandemic significantly affect public transport capacity, increasing congestion. Typical conges-
tion phenomena, together with service disruptions and atypical demand, can lead to low levels of
service harming planned schedules. Therefore, transit operators require a tool that can quickly
forecast a potential lack of capacity in transit systems, to perform service recovery (e.g., introduc-
ing new runs) and inform passengers about crowding (e.g., through real-time information panels
or trip planners). This research proposes an innovative congested run-based macroscopic dynamic
assignment model that incorporates real-time measurements and events to compute users’ elastic
route choices under the assumption that passengers are fully informed. The model simulates the
effects of congestion events and countermeasures introduced by the operators, allowing them to
test several scenarios on large transit networks faster than in real-time.

Keywords: implicit hyperpaths, public transport services, real-time data, schedule-based assign-
ment, short-term forecast, vehicle capacity constraints.

1. INTRODUCTION

Recurrent congestion phenomena and unexpected events (e.g., abnormal demand fluctuations,
complete line failures) affect passengers’ route choices and the propagation of their flow, lead-
ing to service degradation. Public transport agencies need a model for optimal real-time transit
management to mitigate the negative impact on the rest of the network. This model must be able to
quickly predict the distribution of passengers across the network and provide volumes of passen-
gers on specific runs, taking into account: 1) relevant congestion phenomena (i.e., overcrowding
and strict capacity constraints); 2) real-time measurements (i.e., passenger counts and vehicle lo-
cations); and 3) real-time events (e.g., stop closures and run cancellations). Several researchers
have addressed the issue of short-term ridership forecasting in recent decades, mainly focusing
on data-driven demand forecasting (e.g., Zhang et al. [2011], Ma et al. [2014], Xue et al. [2015],
Ding et al. [2016], Zhang et al. [2017], Zhang et al. [2020]). Liu and Chow [2021] proposes a dy-
namic passenger flow estimator to predict origin-destination demand and line flows using station
count data in a congested schedule-based User Equilibrium (UE) model. However, this estimator
is unsuitable for optimal real-time transit management because it does not account for real-time
service disruptions.

We propose a model that predicts short-term passenger flows based on real-time schedules and
passenger counts by performing an online Dynamic Transit Assignment (DTA). The model ex-
tends the Hyper Run Assignment Model (HRAM) proposed by Gentile et al. [2021] and considers
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real-time measurements and events in a Rolling-Horizon (RH) framework. The model: 1) com-
putes elastic route choices by building the diachronic graph of HRAM starting from the Estimated
Time of Arrival (ETA) of vehicles at stops; and 2) corrects the volumes resulting from flow prop-
agation using passenger counts (as Meschini and Gentile [2009], Gentile and Meschini [2011],
Attanasi et al. [2015] and Kucharski and Gentile [2019] do for road networks).

The contribution of this work is the use of HRAM to perform online DTA for short-term ridership
forecasting, continuously updating the underlying service schedule and demand flows to account
for up-to-date data coming from the field.

The social distancing measures affecting public transport usually adopted to limit the spread of
the COVID-19 pandemic imply a capacity reduction of transit vehicles on the supply side and
the introduction of staggered working hours to spread peaks on the demand side. The features
of the proposed model should then become fundamental for transit operators, who would quickly
forecast real-time overcrowding issues and adopt mitigating solutions (e.g., introduce new runs,
inform passengers).

2. METHODOLOGY

HRAM [Gentile et al., 2021] simulates the decision of how to continue a trip to the destination
when a fail-to-board event occurs (i.e., when passengers cannot board a vehicle because there is not
enough space left). Since the outcome of these events is unknown in advance, a passenger chooses
a strategy (rather than a simple path) before starting the trip, aiming to minimize the expected route
cost (which depends on the flow pattern in the framework of dynamic user equilibrium). HRAM
uses hyperpaths (introduced by Nguyen and Pallottino [1988]) in a schedule-based framework to
represent strategies connected to fail-to-board probabilities (firstly proposed by Hamdouch and
Lawphongpanich [2008]). It performs DTA of a given transit supply and dynamic demand by
solving the fixed-point problem, adopting a sequential route choice model (proposed by Gentile
and Papola [2006]) and a Gradient Projection (GP) algorithm for the solution of the UE (which im-
proves the convergence on highly congested networks as shown by Gentile [2016]). This approach
does not require formalizing entire trips and allows an implicit representation of hyperpaths, en-
hancing run-times that are compatible with real-time applications in RH.

HRAM describes the transit supply as a space-time directed graph (Figure 1), where each arc
represents a different phase of the passengers’ trip and connects two nodes with increasing time.
With this approach, the diachronic graph is inherently acyclic, and the computation of the shortest
tree requires a simple visit in reverse chronological order of all nodes (computed in linear time,
as shown by Gentile [2017]). Moreover, the model directly provides volumes of passengers on
specific runs (which is a requirement of real-time transit management).

HRAM represents strict capacity constraints by introducing a fail-to-board hyperarc for each de-
parture Ndepart

rs of run r ∈ Rl (the set of runs of line l ∈ L) at stop s ∈ S. Each fail-to-board hyperarc
is bifurcated and consists of a diversion node Nboard

rs , a fail arc (Nboard
rs ,Nalight

rs ), and a board arc
(Nboard

rs ,Ndepart
rs ). At each event-based diversion node encountered by the passenger, the strategy

associates a branch of the corresponding hyperarc to each possible outcome. Note that the con-
ditional probability of each hyperarc branch is not the result of a choice but the outcome of the
fail-to-board event (passengers take routing choices mainly at stop nodes). Fail-to-board proba-
bilities πa (i.e., the probability that a passenger waiting for a run on a crowded platform fails to
get on the arriving vehicle) are computed as follows, assuming that all mingling passengers have
equal probability to board (unlike in Trozzi et al. [2013] and Trozzi et al. [2015] where there is
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Figure 1: HRAM diachronic graph schema Gentile et al. [2021]. Transit service is
organized in a set of line L, of stops S and runs R. A run r ∈ Rl is a vehicle serving
the stop sequence Sl of a line l ∈ L according to a given timetable and is described by
the following arcs: alight, dwell, mingle (i.e., passengers trying to board), fail, board
and run. Stop s ∈ Sl ⊆ S is the only place where passengers can board and alight, and
we assume that a positive dwelling time trsdwell is needed for boarding and alighting
operations. Nboard

rs (yellow square) represents the diversion node of the fail-to-board
hyperarc, introduced to model strict capacity constraints. The centroid of each zone
z ∈ Z is represented by multiple origin nodes, one for each possible departure from a
connected stop, and one destination node. Demand nodes and arcs are introduced to
model the possibility of delaying the departure with respect to the desired time, using
the stay arcs at origins. Finally, access, egress and transfer arcs represent direct con-
nections between stops and zones, and among stops themselves. They are added only
for significant events (run arriving/departing from a stop) and their topology (and
thus the travel time) depends on the walking shortest time between the connected
elements.

queue with priority). Being the probability of boarding the run:

πag = min
(

1, kr−qb
qa

)
∀a ∈ Aboard

r ,b = Adwell
a , (1)

the fail-to-board probability is the ones’ complement of πag:

πbg = 1−πag ∀b ∈ A f ail
r ,a = Aboard

b , (2)

where:

• Adwell
a is the dwell arc associated with the board arc a ∈ Aboard

r ;

• Aboard
b is the board arc associated with the fail arc b ∈ A f ail

r ;

• kr is the run capacity.

We have extended HRAM to consider real-time data and use it to perform online DTA, as shown
in Figure 2. The model computes online DTA for dynamic demand and supply (the space-time
network of Figure 1 built from ETA at stops). It accounts for real-time passenger counts and events
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by 1) using HRAM to compute elastic local users’ decisions pa (arc conditional probabilities); 2)
running a Flow Propagation Model (FPM) to load the demand consistently with the arc conditional
probabilities pa computed by HRAM. FPM considers strict capacity constraints by using fail-to-
board probabilities πa, limiting the volume propagated to board arcs and forcing the remaining
passengers to the corresponding fail arcs. FPM uses observed volumes (passenger counts) to
correct errors in flow propagation, by overwriting the propagated volumes with the observed ones.

Figure 2: Online DTA schema. The model performs online DTA for dynamic de-
mand dodgt and dynamic supply (the space-time network representing schedule-
based services and their capacities updated with ETA at stops), taking into account
real-time passenger counts and events. It: 1) uses HRAM to compute local users’ de-
cisions pa (arc conditional probabilities); 2) runs a Flow Propagation Model (FPM)
with strict capacity constraints (using fail-to-board probabilities πa) that loads de-
mand consistently with the arc conditional probabilities computed by HRAM. Pas-
senger counts (observed volumes) are used in FPM to correct the propagated vol-
umes by overwriting them in the corresponding arcs.

We run online DTA in an RH framework to account for up-to-date data (as Gentile et al. [2013]
does for dynamic traffic assignment), solving the deterministic problem iteratively by performing
sequential online DTAs (one for each iteration). Each online DTA simulates a prediction horizon,
assuming that passengers know all events related to this time horizon no later than their start time.

Each iteration starts with the volumes resulting from the previous simulation ("warm start"), recov-
ered using a Flow Recovery Model (FRM). First, HRAM computes the elastic local user decisions
on the real-time supply initializing: 1) its route choice model with the expected cost of reaching
the destinations from each stop at the end of the current prediction horizon (recovered from an
offline DTA with a longer time horizon); 2) its flow propagation model with the demand flow
for each node at the beginning of the current prediction horizon (recovered from the volumes re-
sulting from the previous simulation). Then, the Flow Propagation Model (FPM) uses the elastic
local user decisions computed by HRAM to forward the demand and the aggregated flows of the
previous state in chronological order, starting from the origin nodes.
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Flow recovery model

Both HRAM and FPM require restoring the previous simulation state (i.e., diachronic graph and
volumes q∗a on each arc). Specifically, HRAM requires the recovery of node destination flows qs

i
from the |Z| simulation states resulting from the previous simulation HRAM, while FPM requires
the recovery of aggregated node flows qs

i and aggregated arc flows qs
a from the simulation state

resulting from the previous simulation FPM. FRM is the same for both HRAM and FPM and
accounts for schedule changes due to real-time variations in transit service.

FRM recovers the flows q∗a from the previous simulation state for all arcs a ∈ A that started before
the start time τ̃ of the current simulation. Then, it initializes the flows required by HRAM and
FPM as follows:

qs
a = q∗a ∀a ∈ A | τN−

a
< τ̃, (3)

qs
i = ∑a∈A+

i
q∗a ∀i ∈ N, (4)

where:

• qs
a and qs

i are the flows restored for arc a ∈ A and node i ∈ N;

• N−
a is the tail node of arc a ∈ A and τN−

a
is its clock-time;

• A+
i is set of arcs exiting node i ∈ N.

For arcs of type wait, a flow δab (i.e., volume variation due to delays/advances of ETA at stops) is
added/subtracted to the resulting flow q∗a to account for real-time schedule changes.

Flow propagation Model

Flow qi of node i ∈ N is propagated forward in chronological order starting from origin nodes, as
follows:

qi = di +∑a∈A−
i

qa ∀i ∈ N, (5)

qa = qm
a ∀a ∈ Am, (6)

qa = qs
a ∀a ∈ As \Am, (7)

qa = qi · pa ∀a ∈ A+
i , a /∈ As ∪Am, (8)

where:

• A−
i /A+

i is the set of arcs entering/exiting node i ∈ N;

• Am ⊆ A is set of arcs with measurements (i.e., observed volumes);

• As ⊆ A set of arcs with flow restored from the simulation previous state;

• qa is the flow on arc a ∈ A;

• di is the demand (number of passengers) departing from node i ∈ N (null for all nodes
except for each demand node i = Ndemand

zt );

• qm
a is the measured flow on arc a ∈ Am (obtained by converting the real-time passenger

counts to passengers volume on the associated arcs);

• qs
a is the flow on arc a ∈ As obtained from the state snapshot;
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• pa is the aggregated arc turn probability for arc a ∈ A.

Aggregated arc turn probabilities pa are calculated according to the arc type and the presence of
measurements/snapshot flows, as follows:

pa = 0 ∀a ∈ As ∪Am, (9)

pa = πboard
a ∀a ∈ Aboard , (10)

pa = π
f ail

a ∀a ∈ A f ail, (11)

pa = pHRAM
a ∀a /∈ As ∪Am, a /∈ Aboard , a /∈ A f ail, (12)

where:

• πboard
a is the boarding probability of arc a ∈ Aboard computed by (1);

• π
f ail

a is the failing-to-board probability of arc a ∈ A f ail computed by (2);

• pHRAM
a is the aggregated arc conditional probability of arc a ∈ A resulted from HRAM.

Elastic turn probabilities may be null for all the arcs exiting a certain node (passenger counts
on arcs not loaded by HRAM, or unexpected failing-to-board in the FPM). In this case, they are
calculated proportionally to the number of arcs in the forward star of the node.

3. RESULTS AND DISCUSSION

This section describes the numerical tests conducted, which are: 1) the validation against ser-
vice variations on a toy network; 2) the evaluation of algorithm performances and inclusion of
passengers’ count on a medium-size real network.

Validation against service variations

We have tested the proposed model against service variations on the toy network in Figure 3,
using the transit service of Table 1 and the travel demand of Table 2 (passengers leave their origin
at 8:00).

Figure 3: Toy Network. The network consists of four zones connected by three line
routes. Line route B serves Zone 1, Zone 2 and Zone 3. Line route C serves Zone 2
and Zone 3. Line route A serves Zone 4. Passengers can walk from the stop related
to Zone 2 (i.e., Stop 2) to the initial stop of Line route A (i.e., Stop 4).
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Table 1: Toy network, timetable of transit service.

Run Vehicle Arrival Times
Capacity Stop 1 Stop 2 Stop 3 Stop 4 Stop 5

B1 150 08:00 08:06 08:12 - -
C1 50 - 08:06 08:12 - -
B2 150 08:10 08:16 08:22 - -
A1 50 - - - 08:20 08:25
B3 150 08:30 08:36 08:42 - -
C2 50 - 08:30 08:36 - -
A2 50 - - - 08:30 08:35

Table 2: Toy network, origin-destination matrix.

Demand Zone 1 Zone 2 Zone 3 Zone 4
Zone 1 / 50 50 50
Zone 2 / / 300 /
Zone 3 / / / /
Zone 4 / / / /

Starting from 7:30, we have run simulations of one hour every 30 minutes. Figure 4 shows the
flow distribution obtained from the first simulation (Simulation 1, 7:30 - 8:30). In particular, 150
passengers were unable to board their desired run (i.e., B1 and C1) at Stop 2 and waited for the
next available run (i.e., B2). At 8:00 (i.e., the start time of the second simulation), 150 passengers
were boarding run B1 at Stop 1, while the remaining 300 passengers were waiting at Stop 2 for the
first available run.

Figure 4: Toy Network, resulting flow distribution of Simulation 1. The first simu-
lation (7:30 - 8:30) showed that 150 passengers were unable to board their desired
run (i.e., B1 and C1) at Stop 2 and waited for the next available run (i.e., B2). At
8:00 (i.e., the start time of the second simulation), 150 passengers were boarding run
B1 at Stop 1, while the remaining 300 passengers were waiting at Stop 2 for the first
available run.
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We have run the second simulation (Simulation 2, 8:00 - 9:00) in the different scenarios of Table
3.

Table 3: Toy network, scenarios tested for Simulation 2 (8:00-9:00).

Scenario Description
1 no measurements/events
2 run C1 delayed 4 minutes
3 run C1 delayed 10 minutes
4 run C1 and C2 cancelled
5 run A1 cancelled
6 stop 2 of run B1 disabled

Figure 5 shows the flow distribution obtained from these scenarios. The results were consistent
with the expected behavior: passengers reroute when possible. Scenario 6 (Figure 5f) shows an
example of impossible rerouting. Some passengers boarded run B1 at Stop 1 in the first simulation,
planning to get off at Stop 2. In the second simulation, those passengers found out that Stop 2 was
closed and had to stay over the vehicle, even though it did not bring them to their destination.

Performance and passengers’ count inclusion on medium-sized real network

We have tested the proposed model on a medium-sized network, having: 123,130 streets, 6,748
stops, 1,417 line routes, and 119,661 runs throughout the day. We have run simulations every 5
minutes with a prediction horizon of 1 hour, simulating the morning peak hour (6:00 to 9:00).
We have used an ordinary workstation machine with an Intel(R) Xeon(R) Platinum processor and
16GB of RAM to run the test. Each simulation performed five iterations of HRAM to compute
elastic route choices and took about 83 seconds, which is in line with computation times required
by real-time management.

We have tested the inclusion of observed volumes (i.e., passenger counts) in FPM by adding a
measurement of 5000 passengers on a given subway platform at 07:05 to simulate an atypical
demand due to some event (e.g., a sporting event). In particular, this platform had 10 passengers
waiting for the subway between 07:05 and 07:10 (results are with a discretization of 5 minutes).
Once adding the measurement, we have confirmed that simulations starting after 07:05 had 5000
passengers waiting at the platform from 07:05 to 07:10. Considering that the subway capacity
is 1,200 passengers, not all passengers could board the first arriving vehicle. We have also ob-
served congestion spreading all over the network, starting from the platform with extra demand
and propagating in space and time.

4. CONCLUSIONS

Recurrent and non-recurrent congestion phenomena increasingly affect densely interconnected
transit networks. In particular, the measures adopted to contain the spread of the COVID-19
pandemic significantly affect public transport capacity, increasing congestion. Typical conges-
tion phenomena, together with service disruptions and atypical demand, can lead to low levels of
service harming planned schedules. Therefore, transit operators require a tool that can quickly
forecast a potential lack of capacity in transit systems, to perform service recovery (e.g., introduc-
ing new runs) and inform passengers about crowding (e.g., through real-time information panels
or trip planners). This research presents a model that extends the Hyper Run Assignment Model
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(a) Scenario 1: no measurements. (b) Scenario 2: run C1 delayed 4 minutes.

(c) Scenario 3: run C1 delayed 10 minutes. (d) Scenario 4: run C1 and C2 cancelled.

(e) Scenario 5: run A1 cancelled. (f) Scenario 6: stop 2 of run B1 disabled.

Figure 5: Toy network, flow distribution obtained from tested scenarios on events.
In scenario 1 there are no variations in the timetable and passengers confirm the
choice of Simulation 1. In scenario 2 and 3, run C1 was delayed but passengers were
able to confirm their choices (even if with some delays). In scenario 4, run C1 and
C2 were cancelled and passengers rerouted to run B2 and B3. In scenario 5, run A1
was cancelled and passengers rerouted to run A2. In scenario 6, stop 2 of run B1 was
disabled and 100 passengers were unable to reroute. Those passengers boarded run
B1 at Stop 1 at 8:00 (Simulation 1) planning to get off at Stop 2, but they found out
that Stop 2 was closed (Simulation 2) and had to stay over the vehicle, even though it
did not bring them to their destination.
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(HRAM) proposed by Gentile et al. [2021] to predict short-term passenger flows based on real-
time schedules and passenger counts.

The proposed model considers real-time measurements and events by performing sequential online
DTAs that overlap partially (RH). Each simulation starts from a "warm start" considering the flows
resulting from the previous DTA. Every online DTA: 1) extends HRAM to compute elastic route
choices taking into account real-time data (i.e., ETA at stops and events), assuming fully informed
passengers; and 2) propagates the demand according to these choices, overriding the propagated
flows when real-time passenger counts are available. The model adopts fail-to-board hyperarcs to
simulate strict capacity constraints and provides volumes of passengers on specific runs (which is
a requirement for real-time operation). HRAM adopts a GP algorithm to reach convergence, as
strict capacity constraints hinder the convergence of simpler algorithms (e.g., method of successive
averages). HRAM has running times compatible with real-time management thanks to implicit
hyperarc enumeration.

We have validated the model against service variations on a toy network. We have shown that
passengers can reroute if they discover the event (i.e., service variation) before making their final
choice (i.e., passengers cannot change the desired run if they are already on board the one affected
by the event). Moreover, we have tested the algorithm performances on a real network, obtaining
computation times in line with the ones required by real-time management. We have also verified
the inclusion of passenger counts on the same network, adding measurement and observing the
related congestion spreading all over the transit service.

At its current state, the proposed model computes elastic route choices through HRAM, assuming
that passengers are aware of all events related to the prediction horizon no later than their start
time. However, the model could include different levels of information to relax the assumption of
fully informed passengers. Furthermore, the model does not account for passenger counts when
computing elastic route choices. Including them is straightforward and can be achieved using the
observed volumes when updating the costs observed by the passengers. Forthcoming papers will
address the proposed improvements.
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