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Abstract

The fundamental diagram of traffic flow, or in other words, the vehicular flow-speed or

flow-density relationship, for a highway section is determined by both physical charac-

teristics of the section and attributes of the population of drivers and vehicles travelling

through it. The empirical estimation of this relationship by fitting a regression curve to

a cloud of observations of traffic variables may not be robust as the relationship may

suffer from confounding from observed and unobserved attributes of driving behaviour

and vehicular characteristics. This paper adopts a causal econometric approach to obtain

a more reproducible characterisation of the fundamental relationship. We relax the strict

stationary state assumption and instead focus on the cause-effect interactions between

flow and speed to model the spatio-temporal variations in traffic at a macroscopic level.

We use traffic data from a highway section in California. We adopt a fully-flexible non-

parametric specification for the relationship and apply instrumental variables estimation

to control for the aforementioned confounding bias. We deliver some new empirical in-

sights into the macroscopic level dynamics of traffic flow in a highway section alongside

verifying some existing ones.
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1. Introduction

The standard engineering relationship between vehicular flow q, that is, the number of

vehicles passing a given point per unit time, and density k, that is, the number of vehicles

per unit distance in a highway section, as shown in Figure 1, commonly known as the

fundamental relationship of traffic flow1, is based on the assumption that traffic conditions

along the section are stationary, which means that the three key traffic variables, q, k and

v, are the same at each and every point in the highway section (Daganzo, 1997). This

assumption follows from the engineers’ interest in a general relationship to characterise

the flow of traffic in a given facility (Daganzo, 1997).

Figure 1: The fundamental diagram of traffic flow (adopted from Small et al. (2007)).

Consequently, the relationship is estimated empirically by pooling observations from

different cross-sections along the highway section and from different time-periods and

fitting a regression curve to the point cloud. Engineers believe the estimated relationship

to be a property of the road section, the environment and the population of travellers

as on an average, drivers show the same behaviour under same average conditions (Da-

1This relationship can be equivalently expressed as flow-speed or speed-density relationship using the
average vehicle speed v in the highway section, as shown in Figure 1.
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ganzo, 1997). The estimated relationship, however, is only associational and not causal

due to lack of control for persisting uncertainties about the data generating process,

for instance, observed and unobserved time-invariant and time-variant characteristics of

the drivers and vehicles. Control for unobserved confounding is important because such

characteristics can vary from one person to another and from one situation to another,

sometimes in complicated or even unexpected ways, and we are interested in a more ro-

bust characterisation of traffic flow in a highway section that is reproducible and is not

sensitive to variations in driving characteristics.

In this paper, we adopt a causal econometric framework to estimate the fundamental

relationship. Within this framework, we relax the strict stationary state assumption and

instead follow a cause-effect approach to model the macroscopic dynamics of traffic flow in

a highway section by giving due attention to the direction of causality in this relationship.

We use traffic data from a highway section in California and apply a Bayesian non-

parametric instrumental variables estimation that allows us to capture the non-linearities

in the relationship with a fully flexible non-parametric specification and adjust for any

confounding bias via the use of relevant and exogenous instruments as controls.

The main contribution of this research resides in developing a comprehensive under-

standing of the macroscopic level dynamics of traffic flow in a highway section within a

causal econometric framework and determining a novel causal relationship between traffic

flow and speed in a highway section.

Our proposed causal framework is different from the existing causal framework in the

transportation economics literature, which is based on the demand-supply interpretation

of the fundamental relationship. Under stationary state traffic conditions, economists

suggest that the fundamental relationship represents the supply curve for travel in the

road section (Walters, 1961), where users are suppliers of travel. Based on this supply

interpretation of the fundamental relationship, a recent economics literature calls into

question the hypercongested part of the fundamental diagram as shown in Figure 1 and

in turn questions the applicability of traffic controls and congestion pricing in the absence

of evidence indicating any drop in flow with increasing density or demand (Anderson and

Davis, 2018). We argue that in developing a causal understanding of the fundamental

relationship, the economists’ representation of this model as a supply curve may lead to

ambiguity. The fundamental relationship of traffic flow can be treated as equivalent to the
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supply curve for travel only under stationary state traffic conditions, however, existence of

such conditions are highly improbable. Therefore, we do not find this economic approach

to be the most useful framework for our empirical model.

2. Data

We make use of traffic data from a standard highway bottleneck located in the west-

bound direction of the California State Route 24 (SR-24) at the Caldecott Tunnel in

Oakland, California. A schematic representation of this bottleneck is shown in Figure 2.

The high-quality data is collected via a series of loop detectors installed at various loca-

tions along the highway, which measure traffic flow and vehicle speed averaged over every

5-minute duration. The data is maintained by the California Department of Transporta-

tion (Caltrans) and made publicly available through their Performance Measurement

System (PeMS) website2.

We use observations on the westbound traffic from weekdays in the summer months

between June-August in 2005-2010 and between the time period 12:00 hours to 00:00

hours for this study. We only include those periods of observation when no infrastructure

related shocks in form of lane closures or traffic incidents are present and when weather

conditions are good and favourable for drivers. As the highway section is located well

away from any major upstream or downstream intersections, we can assume that this

section allows us to study the traffic dynamics arising solely from the presence of the

bottleneck, without being affected by any upstream or downstream influences.

Figure 2: Highway Bottleneck in the westbound SR-24 at Caldecott Tunnel in California.

2Performance Measurement System (PeMS) website: http://pems.dot.ca.gov/
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3. Methodology

3.1. The Direction of Causality in the Fundamental Relationship

According to the engineering literature, the direction of causality in the fundamental

relationship, that is whether flow affects speed or vice-versa, could be both ways (Da-

ganzo, 1997). For instance, if traffic enters the upstream end of a highway at rate qu

until a stationary state develops downstream, then the downstream space-mean speed vd

should be a consequence of the input flow qu and the behaviour of drivers as they interact

with one another while passing (Daganzo, 1997). The downstream density kd would also

be a consequence of qu. In this case, causality comes from upstream (refer figure 3). On

the other hand, if a stationary state develops behind a slow-moving obstruction to traffic

or any other bottleneck, then through the reproducible behaviour of drivers we would

expect the average spacing inside the queue upstream of the obstruction, and therefore

ku and qu to be a consequence of the obstruction’s speed vo (Daganzo, 1997). In this

case, causality comes from downstream (refer figure 4).

Figure 3: Causality comes from upstream. Figure 4: Causality comes from downstream.

For our highway section with a downstream bottleneck, we consider two possible

scenarios: first, before activation of the bottleneck, causality becomes from upstream

and second, after the bottleneck is triggered, causality comes from downstream.

3.2. Model Specification

3.2.1. Before activation of the bottleneck

In this case, we consider that the causality comes from the upstream and the inflow

into the highway section controls the macroscopic traffic dynamics inside the section.

We consider the flow through the bottleneck, qbit, and the speed inside the bottleneck,
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vbit, in the five-minute interval i, i = 1, .., N , on a particular day t, t = 1, ..., T , to be a

function of the inflow into the highway section, quit, conditional on the properties of the

infrastructure, the environmental conditions and the average behaviour of drivers and

vehicles.

qbit = f(quit) + δit + ξit

vbit = g(quit) + ωit + ψit

(1)

where δit and ωit are the unobserved (to researchers) traffic specific behavioural com-

ponent common to all drivers or any traffic specific vehicular characteristic common to

all vehicles or any weather specific component affecting the entire traffic stream and ξit

and ψit represent normally distributed idiosyncratic error terms representing all random

shocks to the dependent variable. The exact structural form of how quit enters the two

equations is unknown, so we adopt non-parametric specifications f(.) and g(.). We ex-

pect δit and ωit to be correlated with quit and introduce an upward bias in the estimated

relationships as we expect the direction of correlation between δit and ωit and quit to be the

same as that between qbit or vbit and δit and ωit. As an example, for an average population

of risk-taking drivers we expect a positive correlation between high risk taking behaviour

and speeds as well as high risk taking behaviour and flows.

3.2.2. After activation of the bottleneck

In this case, we consider that the causality comes from the downstream and the speed

inside the bottleneck controls the macroscopic traffic dynamics inside the section. We

consider both inflow into the highway section, quit, and flow through the bottleneck, qbit to

be a function of the speed inside the bottleneck, vbit, conditional on the properties of the

infrastructure, the environmental conditions and the average behaviour of drivers and

vehicles.

qbit = f(quit) + δit + ξit

vbit = g(quit) + ωit + ψit

(2)

where δit and ωit are the unobserved traffic or weather components and ξit and ψit are

the random shocks to the dependent variable as explained in the previous case. Similar to

the previous case, we expect an upward bias in the estimated relationships in the absence

of control for the unobserved effects δit and ωit.
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3.3. Empirical Identification

To estimate equations 1 and 2, we adopt a Bayesian non-parametric instrumental

variable approach proposed by Wiesenfarth et al. (2014) that allows us to correct for

endogeneity bias in regression models where the covariate effects enter the model with

unknown functional form. Bias correction relies on a simultaneous equations specification

as shown in equation 3 and the joint error distribution is modelled flexibly via a Dirichlet

process mixture prior. To account for nonlinear effects of continuous covariates, both the

structural and instrumental variable equation (refer 3) are specified in terms of additive

predictors comprising penalised splines. Efficient Markov chain Monte Carlo simulation

techniques are employed for a fully Bayesian inference. The resulting posterior samples

allow us to construct simultaneous credible bands for the non-parametric effects, including

data-driven smoothing parameter selection. In addition, improved robustness properties,

such as adjustment for outliers and extreme observations, are achieved due to the flexible

error distribution specification.

We have a model with a single endogenous covariate, that is,

y = s(x) + ε2, x = h(z) + ε1 (3)

with response y, covariate x, and instrumental variable z and with effects of unknown

functional form s(.) and h(.), respectively and random errors ε2 and ε1. Endogeneity bias

arises if E(ε2|ε1) 6= 0. Then assuming the identification restrictions

E(ε1|z) and E(ε2|ε1, z) = E(ε2|ε1), (4)

yields

E(y2|y1, z) = s(x) + E(ε2|ε1, z) = s(x) + E(ε2|ε1)

= s(x) + ν(ε1),
(5)

where the unobserved term in the first equation ν(ε1) is the control function.

Due to the absence of suitable exogenous instruments, we use lagged levels of endoge-

nous covariates as their instruments, that is, for an endogenous covariate observed in the

five-minute interval i on day t, we consider the observation on the covariate from the
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same interval i from the previous day t− 1 as its instrument.

4. Results and Discussion

4.1. Activation of the bottleneck

To understand when the bottleneck gets activated, we study the variation of the up-

stream speed vuit over the speed inside the bottleneck vbit as shown in Figures 5, estimated

via the Bayesian approach discussed in Section 3. We assume that the activation of the

bottleneck will be followed by a significant fall in the upstream speed indicating the onset

of queuing. We identify the value of the bottleneck speed at which the upstream speed

drops to a constant speed indicating the movement of queue behind the bottleneck. We

also carry out a Regression Kink Design analysis to test for any statistically significant

change in slope of the vuit vs vbit line at the 99 percent confidence level. The results are

presented in Table 1. We note that the bottleneck gets activated approximately when

the speeds inside the bottleneck below to 54.9 mph.

Figure 5: The estimated variation of upstream speed with speed inside the bottleneck [Estimated inter-
cept = 44.10 (0.06)].
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Table 1: Summary of results from Regression Kink Design analysis.

Speed inside Change in slope of vuit vs vbit
Bottleneck (in mph) Coefficient Standard Error

55.5 4.18 3.48
55.4 4.81 3.25
55.3 5.74* 3.28
55.2 6.79** 3.09
55.1 7.03** 3.32
55.0 7.02** 3.08
54.9 7.06** 3.01
54.8 8.11*** 2.57
54.7 8.76*** 2.56
54.6 8.80*** 2.55

Significance: (*) 90 percent, (**) 95 percent, (***) 99 percent

4.2. Before activation of the bottleneck

We present the results from estimation of equation 1 using the Bayesian instrumen-

tal variables approach discussed in Section 3. We compare these results with a simple

Bayesian penalised spline-based non-parametric regression without involving any instru-

mental variables.

Figure 6: Estimated effect of inflow on flow
through the bottleneck using instrumental vari-
ables [Estimated intercept = 370.55 (0.32)].

Figure 7: Estimated effect of inflow on flow
through the bottleneck without instrumental
variables [Estimated intercept = 341.41 (0.36)].

From 6 and 7, we do not note any noticeable differences in the two curves. We find that

the flow through the bottleneck increases linearly with inflow. The estimated capacity of

the bottleneck is around 640 vehicles per five minutes.
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Figure 8: Estimated effect of inflow on speed
inside the bottleneck using instrumental vari-
ables [Estimated intercept = 63.26 (0.01)].

Figure 9: Estimated effect of inflow on speed in-
side the bottleneck without instrumental vari-
ables [Estimated intercept = 64.56 (0.01)].

From 8 and 9, we do not again note any noticeable differences in the two curves. We

find that speeds inside the bottleneck fall at an increasing rate with inflow.

4.3. After activation of the bottleneck

We present the results from estimation of equation 2 using the Bayesian instrumen-

tal variables approach discussed in Section 3. We compare these results with a simple

Bayesian penalised spline-based non-parametric regression without involving any instru-

mental variables.

Figure 10: Estimated effect of speed inside the
bottleneck on inflow using instrumental vari-
ables [Estimated intercept = 296.95 (0.18)].

Figure 11: Estimated effect of speed inside the
bottleneck on inflow without instrumental vari-
ables [Estimated intercept = 298.21 (0.22)].

From Figures 10 and 11, we note that with activation of the bottleneck follows, there

is continuous decrease in inflow into the highway section, which primarily occurs due
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to queuing. Although we do not see any noticeable differences in the shapes of the two

curves, we find that use of instrumental variables yields wider creditable bands when speed

inside the bottleneck falls approximately below 35 mph. The bar on the X-axis denotes the

number of observations for any value of X. We note that the use of instrumental variables

allows for appropriate adjustment for any extreme observations or outliers. These extreme

observations may be a result of any external shock which may be infrastructure related

like incidents, or any weather related shock.

Figure 12: Estimated effect of speed inside the
bottleneck on flow through the bottleneck using
instrumental variables [Estimated intercept =
540.10 (0.32)].

Figure 13: Estimated effect of speed inside the
bottleneck on flow through the bottleneck with-
out instrumental variables [Estimated intercept
= 538.07 (0.40)].

From Figures 12 and 13, we note significant differences between the two curves.

Where, the capacity drop estimated via the regression without instrumental variables

is around 9 percent, with instrumental variables we estimate a capacity drop of about 20

percent followed by an eventual rise of around 3 percent. Thus, the net drop in capacity

is around 18 percent. Thus, without the use of instrumental variables, there is an upward

bias in estimated slope of the speed-flow curve which leads to underestimation of the

capacity drop. From Figure 12, we also note the uncertainty in further drop in flows

for bottleneck speeds below 35 mph. As noted previously, these observations may be

related to infrastructure or weather related shocks. Without instrumental variables, we

are unable to quantify this uncertainty. In our full paper, we present a full comparison

of these results with the existing engineering literature.
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5. Relevance and Future Work

This theme is important as much of the traffic flow theory depends on the existence

of a fundamental relationship between flow, density and speed either explicitly as in the

LWR hydrodynamic model or implicitly as in car following models. Moreover design

of highway sections are based on the fundamental relationship as detailed in standard

reference manuals like the HCM or the UK-CoBA. Thus, a more robust characterisation

of this relationship is important. Furthermore, as this relationship forms the backbone

of the highway pricing literature, therefore, the empirical findings from this study also

have a high relevance for transportation economists.

Our future work comprises of finding equivalent parametric estimates to mimic the

non-parametric functional forms for the fundamental relationship and to validating the

results by applying the proposed framework on a different highway section. In our full pa-

per, we also discuss the implications of the estimated relationships on the transportation

economics theory on highway pricing.
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