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ABSTRACT1

Shared mobility services are announced as a game-changer in transportation and a promising so-2

lution to reduce congestion and improve the performance of urban mobility. They could prefigure3

the arrival of autonomous vehicles. Modeling of these new services is a real challenge, especially4

because existing approaches are mainly an adaptation of methods devoted to classic transportation5

services. Consequently, this paper introduces a new data-driven optimization method fully devoted6

to shared mobility service. First, the proposed approach decomposes the recurrent demand based7

on its spatio-temporal features to overcome the drawbacks of the existing methods. Notably, it8

makes it possible to consider larger instances and to build robust solutions. Thus, recurrent de-9

mand patterns are identified to capture the potential demand of shared mobility services using a10

tailored clustering process. Second, a variant of Dial-a-Ride Problem is implemented to design11

robust lines to serve this demand. Such a hybrid method makes it possible to define relatively12

massive transport lines while maintaining spatial and temporal proximity to users real demand.13

The method is then tested with an open-source dataset released by the New York City Taxi and14

Limousine Commission.15

Keywords: Clustering, Shared mobility, Dial-a-Ride, Similarity, Ride-sharing.16
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INTRODUCTION1

Shared mobility services are announced as a game-changer in transportation and a promising solu-2

tion to reduce congestion and improve the performance of urban mobility. Moreover, it appears that3

recent studies on shared mobility, particularly regarding the real-time satisfaction of the demand,4

could prefigure the arrival of autonomous vehicles. Shared mobility consists in the shared use of a5

vehicle (car, motorcycle, scooter, bicycle, or other travel modes). Modeling of these new services6

is a real challenge, especially because existing approaches are mainly adaptation of methods de-7

voted to classic transportation services. These methods can be classified into two main categories:8

the conventional methods and the dynamic methods.9

The conventional methods are used to design rapid transportation lines such as subway, street-10

car, or bus lines (1, 2, 3). These approaches can be qualified as long term methods because the11

transportation supply is defined according to both urban planning purpose and transportation de-12

mand. Consequently, the goal is motivated by serving an existing demand but also to modify the13

travel behavior at a long time scale. These approaches are well known in the literature for many14

years. However such methods involve long term demand changes. Indeed, the deployment of such15

lines affects the socio-economic development around the lines stops, and so affects the demand16

of mobility. Thus, unlike dynamic methods, conventional methods are not adapted to an instan-17

taneous mobility demand. These methods aim to respond to a demand for global mobility; the18

lines designed follow mobility corridors with a high concentration of departure and arrival points.19

Generally, the demand is estimated using online questionnaires, surveys, or historical moving data.20

However, these methods have some limits; the calculated flows do not take into account each trip’s21

specificities but only a rough estimation of the movements of a large number of users. This spatial22

and temporal aggregation has led to the design of significant lines for which the stops are located23

relatively far from the real desired departure and arrival points for users. It has been shown in24

numerous studies that this problem of the last mile is one of the major brakes which prevents users25

of personal vehicles from deporting to shared modes of transport. It is to overcome this problem of26

the last mile that for the past ten years, taking advantage of the emergence of smartphones and un-27

derlying geolocation technologies, research has turned towards a new approach so-called dynamic.28

Contrary to conventional approaches, dynamic methods aim at adapting the service supply to the29

real-time demand characteristics. One of the main benefits is that such approaches provide users30

with short-term access to a travel mode on an as-needed basis. These transport services may take31

different forms: station-based roundtrip services, station-based one-way services, free-floating ser-32

vices, etc. Similarly, many economic models exist to meet diverse user needs: public or private,33

membership-based, peer-to-peer (P2P), for-hire, or public transit system. Moreover, sharing can34

include either sequential sharing (i.e., different users sharing the same vehicle one after the other),35

or simultaneous sharing (i.e., sharing the same vehicle with multiple users for the same trip).36

Simultaneous sharing is a particular challenge that many services try to tackle: transportation net-37

work companies (TNCs) now offer ride-sourcing services (including shared taxi, shuttle, etc.);38

ridesharing (including carpooling, vanpooling, etc.) is becoming more and more popular. The39

main objective of real-time methods (or highly dynamic) is to match a maximum number of re-40

quests while minimizing objective functions, such as the users’ waiting time or the total travel41

time. (4, 5) provide a list of objective functions and matching policies well known in the literature.42

The dynamic method is well adapted to large fleets of vehicles. The dynamic matching between43

users and vehicles is efficient when the number of vehicles is significant. It allows reducing the44
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waiting time and detours to pick up or drop off a user. The dynamic approach is considered as a1

bridge technology that will be replaced by autonomous vehicles when the technology will be ma-2

ture (6, 7, 8). Despite their many advantages, the dynamic methods also have certain limitations.3

The real-time matching between travelers and vehicles is complex, and it can not be performed4

on large instances. The number of passengers served by a vehicle is often low. That is why the5

dynamic approach is not adapted to design massive customized lines of transport.6

This paper aims to propose a new hybrid approach that allows the design of massive and robust7

lines of transport adapted to the daily demand. The main interest that is driven by the method, is to8

detect a large number of similar and recurrent trips to estimate the potential demand of shared mo-9

bility, then to design transport lines allowing pickups and deposits as close as possible to the real10

demand of the users. The approach is defined as hybrid because it take into account the regularity11

of trips over time (as in conventional methods); however, the distances to be covered and the de-12

lays observed for users remain relatively short. For this, groups of similar trips are firstly searched13

using a function to assess the similarity between 2 trips, and a clustering method to build groups of14

similar trips. Secondly, we analyze whether these clusters are episodic or regular. The method has15

been developed for detecting clusters of similar and regular trips in time (meta-clusters). Finally,16

an optimization method (DARP) is applied to design transport lines adapted to this demand for17

mobility.18

The rest of the paper is organized as follows. Section 2 presents the data set and introduces the19

methodology used to estimate demand patterns. Then, Section 3 is dedicated to the design of20

customized transport lines to satisfy the demand. Section 4 focuses on the analysis of the results21

of the demand estimation and the planning of new lines. Finally, Section 5 is devoted to a final22

discussion.23

ESTIMATION OF THE DEMAND24

This section’s main objective is to show how the demand can be decomposed into spatio-temporal25

areas containing a significant number of similar trips. The study focus on the demand of shared26

mobility in Midtown and Upper East Side. The objective is to present the method used to obtain27

clusters of similar and recurrent trips over time (meta-clusters). These clusters will be used to de-28

fine the instances of the optimization problem presented in Section 3. The methodology is based29

on three steps: (i) definition of a similarity function to estimate the likeness between two trips;30

(ii) implementation of a clustering method to create clusters of similar trips; (iii) development of31

a method to detect recurrent clusters over time. However, it is essential to underline the fact that32

the demand is analyzed from a transportation point of view even if many other aspects could be33

taken into account: economic, social or behaviorial. Our method determines an upper bound of the34

potential of shared mobility.35

We use an open-source dataset released by the New York City Taxi and Limousine Commission1.36

Although these data are not fully representative of human mobility since they only correspond to37

taxi trips, such a dataset provides an attractive proxy for studying the individuals’ routes within a38

city. The study focuses on morning peak hours from 8h to 11h of June 2011. The area studied is39

a well known high-density area in terms of mobility in New-York City: Midtown and Upper East40

Side (9, 10). For each trip i, the dataset gives access to the following information: departure time41

tPU
i and location pPU

i = (xPU
i ,yPU

i ) of the pick-up of the passenger(s); arrival time tDO
i and location42

1data source: https://www1.nyc.gov/site/tlc/index.page.
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pDO
i = (xDO

i ,yDO
i ) of the drop-off.1

First, it has been shown that the similarity function is used to quantify the likeness between two2

trips. Then the method used to detect groups of similar trips in different spatio-temporal areas is3

presented. Finally, we investigate if commonalities exist between the clusters of successive studied4

days.5

6

Modeling similarity between individual trips7

Firstly it is essential to define a similarity function to estimate the likeness between trips. The goal8

of such a function is to quantify the similarity between two trips. We use the similarity function9

presented in (11) because it was shown that it provides excellent results to estimate the similarity10

for the trips defined by a pair origin-destination. The similarity is calculated according to the11

spatio-temporal commonalities between the trips. Let S(i, j) the similarity function between trips12

i and j. From a physical point of view, the intuition is that two (or more) travelers may have an13

interest to share their trip if they start in the same neighborhood and at the same moment, and14

want to go to the same destination. The function S must encompass these different spatio-temporal15

attributes of the trips. We proposed the following function:16

S(i, j) = ∑
l∈[PU,DO]

αle| f
l(i, j)| (1)

where f l(i, j) is the feasibility function and αl is a coefficient. Function f describes the service’s17

potential to operate the shared trips, i.e. the ability to pick up (or drop off) the two travelers before18

both of their desired departure times:19

f l(i, j) = |t l
i − t l

j|− γd(pl
i, pl

j) (2)

where γ is the average pace to connect travelers that want to share a trip. This parameter is a
general and synthetic formula to describe the operation of the service and the way in which this
service gathers two demand requests into the same vehicle: defining a meeting point, successive
pick-ups, etc. For example, if the first traveler must walk to the second traveler’s pick-up point,
then γ is equal to the inverse of the walking speed. If this distance is traveled by car, meaning
that the service offers door-to-door service, then γ is equal to the inverse of the vehicle speed.
Consequently, f is positive if the match can be realized before the two desired departure times
t l
i and t l

j, whereas f is negative if travelers have to experience delay to make the match possible.
Moreover, αl is equal to 1

2 if f l(i, j) > 0 and to 3
2 otherwise because it is more disadvantageous

to be delayed. In addition to this first index of similarity S(i, j), excessive distances/durations for
rendezvous are penalized. Thus, penalties θ l

x and θ l
t are added when, respectively, the distances

between origin (or destination) locations and departure (or arrival) times of trips i and j exceed,
respectively, specific thresholds, δ l

x and δ l
t :

θ l
x = ed(pl

i ,p
l
j)−δ l

x ∀l / d(pl
i, pl

j)> δ l
x (3)

θ l
t = e

|t l
i−t l

j|.
δ l
x

δ l
t
−δ l

t ∀l / |t l
i , t

l
j|> δ l

t (4)

Otherwise, these penalties are null. In this manner, S(i, j) = S(i, j)+θ l
x +θ l

t defines a sharp func-20

tion that enhances the differences between trips and facilitates identification of similar travelers in21

the dataset. Notice that S is minimal (and equal to 1) when the two trips are exactly identical.22
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Detection of similar trips for individual days1

The method presented here allows us to detect spatio-temporal areas where there are a significant2

number of similar trips. The function of similarity exposed above only estimates the likeness3

between two trips but does not detect clusters of similar trips. In order to detect such groups, a4

clustering algorithm is used. The function of similarity allows us to compute the similarity matrix5

requested by a clustering algorithm.6

A variant of a well-known clustering density-based method (12) is applied for each day to detect7

groups of similar trips. This method only requires two parameters: a threshold ε and a minimum8

number of points MinPts, which have to be in a radius ε so that the studied point is considered as an9

element of the cluster, see (13) for more details. The parameter ε is the maximal distance between10

trips, i.e., the maximal value of S, allowed to consider them as similar and group them into the same11

cluster. However, this method must be slightly adapted to detect groups of different density. Thus,12

a successive DB-SCAN clustering is performed, i.e. itdbscan ((14) for more information), using13

the similarity function S as the distance, while updating iteratively the values of the parameters.14

Starting with a large value of MinPts = M and a drastic ε , it makes it possible to identify large15

groups of travelers in the initial data set of trip T . In other terms, we first detect large and high-16

density clusters. Then, the DB-SCAN method is applied on the remaining non-clustered trips to17

detect groups of size M−1. This process is repeated until MinPts = 2.18

Clusters detected have different sizes, from 2 trips to 74 trips gathered into the same group. It19

brings to light that the shared mobility demand may take many aspects requiring different forms of20

transportation services to be optimally satisfied. Figure 1 depicts four clusters with different sizes21

and characteristics. The average travel length lk is directly the arithmetic average of the length of22

nk trips within the cluster k, whereas the average travel time τk is the arithmetic average of the23

duration of the nk trips. Figure 1.e shows the number of clustered trips and the total number of24

trips per day. The developed method detects almost 85% of similar trips per day on average in the25

studied zone.26
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(a) nk = 4 lk = 0.93km τk = 6.5min (b) nk = 19 lk = 2.58km τk = 13.3min

(c) nk = 30 lk = 1.95km τk = 9.2min (d) nk = 74 lk = 1.56km τk = 9.8min

(e) (f)

FIGURE 1 (a),(b),(c),(d) clusters with different characteristics, the pick-up are depicted in green and drop
off in red. nk denotes the number of trips in the cluster k, lk denotes the average length of trips in k and τk
denotes the average duration of trips in k. (e) Ratio of clustered trips per day in Midtown and Upper East Side
from 8h to 11h. (f) Example of demand graph for a randomly selected meta-cluster.
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Identification of regular demand pattern for multiple days1

Once this daily analysis is done, we investigate if commonalities in the clusters can be identified.2

Many approaches exist to derive the most representative partition from a group of partitions, such3

as meta-clustering or consensus learning (15). Here, we use the same clustering method to main-4

tain consistency when scaling-up. In the following, to reduce the computational time, we focus5

the study on the 14 days of the dataset for which the ratio of clustered trips is the highest: June 66

to 19, 2011. The objective is now to find out if there are similar trips (relatively close departure7

and arrival locations and times) made several times during the studied period. These recurrent8

spatio-temporal areas are called meta-clusters. For that purpose, each cluster previously found is9

considered as a new trip, formed by the centroïd of its pick-up and the centroïd of its drop off.10

Centroïds correspond to the mean origin/destination locations and mean departure/arrival times of11

the clustered trips. This information can be useful to design the transportation supply because cen-12

troïds can be the locations of common meeting points of the standby areas of shared vehicles. A13

second clustering is then performed, it returns clusters with similar characteristics (without taking14

into account the initial day when the trips were made). In other words, two clusters are in the same15

meta-cluster, if their centroïds have close departure and arrival locations and times. Interestingly,16

we observe that more than 94% of the daily clusters are recurrent from one day to another.17

The representation of a meta-cluster on a 2D map is difficult to analyze because the time dimen-18

sion is not accounted for. Consequently, we prefer to focus on the evolution of the daily clusters’19

size and the localization of the related origin/destination whereabouts. Each meta-cluster can be20

depicted as a graph of the demand. Figure 1.f shows the graph of the demand for a randomly21

selected meta-cluster. This figure shows that in the same spatio-temporal area, similar trips can22

be seen every day, except on weekends. Each meta-cluster provides precise information about its23

location, its estimated departure and arrival times and the total number of trips performed per day.24

It is important to note that different individuals perform these trips from one day to another. How-25

ever, global human mobility is remarkably regular; this is a valuable insight to tune transportation26

services and favor shared mobility efficiently.27

CUSTOMIZED SUPPLY DESIGN28

As mentioned in the previous section, the spatio-temporal areas containing similar and regular trips29

(meta-clusters) are detected. The study’s next objective is to find a way to serve the pick-up and30

drop off points in each of these meta-cluster while respecting a set of constraints: time windows,31

vehicle capacity, size of the fleet, etc. A minimalist example of the developed method is depicted32

in Figure 2. Figure 2.a shows a set of 3 meta-clusters; each of them contains several clusters of33

similar trips. A green marker and a red marker linked by a blue line depict a cluster containing34

several similar trips. The green and red markers designate respectively the points of pick-up and35

drop off of a cluster. A meta-cluster is depicted by an aggregation of clusters in the same spatial36

area. On average, each cluster contains 6.22 similar trips. Moreover, a meta-cluster contains, on37

average 8.64 clusters. In other words, each meta-clusters contains on average 53 trips with very38

similar characteristics (see Section 4). The method consists to design a line of transport serving39

a set of meta-clusters with characteristics compatible (size, time-windows, etc.). Depending on40

the meta-clusters chosen, the number and size of vehicles required will be different. To quantify41

the potential demand of a tour, we plot the total number of trips per day served by a tour going42

through these meta-clusters. Figure 2.c depicts the total number of trips served per day for the set43
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of meta-clusters depicted in Figure 2.a1

2

(a) (b)

(c) (d)

FIGURE 2 Green markers depict the pick-up and red markers the drop off (a) 3 meta-clusters randomly
chosen between 08h15 and 08h35. (b) example of line designed, serving the centroids of pick-up and drop off
of each meta-cluster. (c) Total number of trips per day served on the set of 3 meta-clusters. (d) Shows the
number of meta-clusters for each time slot in function of the minimal median value of trips per day required

Then, the selection of a set of meta-clusters to find a potential tour of vehicles is performed.3

We use the median number of trips per day in a meta-cluster as an indicator of its size. For each4

studied period, a minimal median value required is defined; we filter the meta-clusters with a5
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median inferior to this value. This method allows us to obtain a reasonable number of meta-1

clusters to solve a relatively small instance of the optimization problem. However, it should be2

noted that the solution is optimal for each period on which we solve the problem, but an optimal3

result is not guaranteed for a set of periods. The meta clusters found are used to define a Dial-4

a-Ride Problem (DARP) instance. Given the large number of meta-clusters, it is impossible to5

directly model vehicle tours from the whole set of meta-clusters. That is why we focus this study6

only on high capacity vehicle tours. This method allows us to serve a large number of passengers7

by solving smaller problem instances. The main advantage of this method is that the calculation8

time depends on the number of meta-clusters served and not directly of the number of passengers.9

That is why it is crucial to find the largest possible meta-clusters. If we solve the problem for a set10

of large meta-clusters, the number of passengers effectively served will be significantly higher.11

There are many variants for the DARP problem, (16, 17) give a list of them based on different12

objective functions. In our case, we use a variant presented in (18). This model is depicted below13

Eq.5 to Eq.17. The model is based on a three index formulation.14

Let G = (V,A) a directed graph. The set of vertices V is partitioned as follow : the first and the15

last element are two copies of the depot, elements from index 1 to n are pick-up and elements16

from index n+ 1 to 2n are drop off. P denotes the set of pick-up and D the set of drop off. A17

request is a couple (i,n+ i), where i ∈ P and n+ i ∈ D. The load of each vertex is defined as qi,18

with q0 = q2n+1 = 0, qi ≥ 0 for i in {1, ...,n} and qi = −qi−n for i in {n+ 1, ...,2n}. A service19

duration di ≥ 0 with d0 = d2n+1 = 0. K denotes the set of vehicles. The capacity of a vehicle20

k ∈ K is Qk, and Tk denotes the maximal duration of a route for a vehicle k. The arc set is defined21

as: A = {(i, j) | i = 0, j ∈ P or i, j ∈ P∪D, i ̸= j and i ̸= n+ j, or i ∈ D, j = 2n+ 1} the cost of22

traversing an arc (i, j) with a vehicle k is ck
i j, and the travel time between two nodes i and j is ti j. L23

denotes the maximal ride time and the time window of a vertex i is [ei, li]. xk
i j is a binary variable24

equal to 1 if and only if (i, j) is traversed by a vehicle k ∈ K. Let uk
i the time at which a vehicle k25

starts servicing a vertex i the load of vehicle k leaving vertex i, and rk
i the ride time of user i.26

(DARP)27

Minimize ∑
k∈K

∑
i∈V

∑
j∈V

ck
i jx

k
i j (5)

subject to28

∑
k∈K

∑
j∈V

xk
i j = 1 (i ∈ P), (6)

29

∑
i∈V

xk
0i = ∑

i∈V
xk

i,2n+1
= 1 (k ∈ K), (7)

30

∑
j∈V

xk
i j − ∑

j∈V
xk

n+i, j = 0 (i ∈ P,k ∈ K), (8)

31

∑
j∈V

xk
ji − ∑

j∈V
xk

i j = 0 (i ∈ P∪D,k ∈ K), (9)

32

uk
j ≥ (uk

i +di + ti j)xk
i j (i, j ∈V,k ∈ K), (10)

33

wk
j ≥ (wk

i +q j)xk
i j (i, j ∈V,k ∈ K), (11)

10



1

rk
i ≥ uk

n+i − (uk
i +di) (i ∈ P,k ∈ K), (12)

2

uk
2n+1 −uk

0 ≤ Tk (k ∈ K), (13)

3

ei ≤ uk
i ≤ li (i ∈V,k ∈ K), (14)

4

ti,n+i ≤ rk
i ≤ L (i ∈ P,k ∈ K), (15)

5

max(0,qi)≤ wk
i ≤ max(Qk,Qk +qi) (i ∈V,k ∈ K), (16)

6

xk
i j = 0 or 1 (i, j ∈V,k ∈ K), (17)

This model presents several interesting aspects: multiple vehicles, time-windows for Pick-7

up, or Drop Off. The main objective of this method is minimizing the total route length. However,8

several other constraints can be added, such as vehicle capacity, maximum route duration, or max-9

imum ride time for users. Nevertheless, it is essential to note that the meta-clusters previously10

found are independent of the method chosen to serve them and vice versa. Indeed depending on11

the objective searched, an approach may be more interesting that another. For example, it could be12

interesting to use a method to minimize the total route length for a Transportation Network Com-13

pany. From a user point of view, it could be more interesting to use a technique allowing to reduce14

the waiting time to be served. Several methods aim to satisfy an objective function depicted as a15

combination of constraints such as transportation time, ride time, excess of maximum ride time,16

waiting time, time windows violations, etc. (19). A comparison with these sophisticated methods17

will be studied in a future study.18

19

RESULTS20

This Section is devoted to the results of the proposed method for the case of NYC. First, the21

meta-clusters are presented and analyzed. Secondly, based on this demand decomposition, the22

optimization method is tested and evaluated.23

Selection of the spatio-temporal areas24

First of all, it is interesting to analyze the characteristics of the meta-clusters found. As mentioned25

in Section Method - Estimation of the demand, in the studied area between 08h00 and 11h00,26

almost 85% of trips can be considered similar. Moreover, more than 94% of trips are recurrent,27

i.e., these trips can be observed almost every day. 2136 spatio-temporal areas are detected as zones28

where there is a recurrent potential demand of shared mobility. On average, each meta-cluster29

contains 53 trips. Once again, it is important to notice that different users surely perform these30

trips. In the following, it is considered that the users’ meeting point is defined as the centroïds31

of pick-up (respectively drop off) of a meta cluster. Thereby, it is interesting to know the spatial32

and temporal difference between the centroïds and the points of pick up and drop off. Table 4.133

shows that the spatial distances are close to 200m. The average temporal shifts are nearly 6 minutes34

11



which is entirely acceptable. It shows that the meta-clusters found are relatively close to the initial1

clusters estimated from the real rides of users. The average travel distance and time in the meta-2

clusters are respectively 1.71km and 11.1min. Although these data are not fully representative of3

human mobility since they only correspond to taxi trips, such a dataset provides an attractive proxy4

for studying the individuals’ routes within a city.5

Variable Result
Average spatial distance Pick-up / centroïd of Pick-up 0.21 km
Average spatial distance Drop off / centroïd of Drop off 0.21 km
Average shift between departure times / centroïd of departure times 6.16 min
Average shift between arrival times / centroïd of arrival times 6.27 min

TABLE 1 Average spatial and temporal distances between pick-up, drop off and the
centroïds of the meta-clusters.

In a first time, it is necessary to select a reasonable number of meta-clusters to solve a6

relatively low instance of the optimization problem. As said in Section Customized Supply Design,7

the median number of trips per day in a meta-cluster is used as an indicator of its size. Figure 2.d8

shows us for each one hour period the number of meta-clusters depending on the chosen minimal9

median value. In other words, a meta-clusters is counted if and only if its median value of trips10

per day is greater or equal to the chosen value. It is important to note that the number of points11

effectively treated in the DARP will be for each period 2∗number o f clusters, because a vehicle12

serve a pick-up and a drop-off for each meta-cluster. According to Figure 2.d, the minimal median13

value 24 has been selected to find potential routes with a large number of users with very short14

execution times.15

Demand-driven route optimization16

According to the results showed in Section - Results - Selection of the spatio-temporal areas, three17

periods of one hour for which the meta-clusters contain at least a median of 24 trips per day are18

selected. Figure 3.a shows the potential number of trips per day that can be served on the period19

08h00-11h00. This result illustrates one of the method’s interests: the 18 meta-clusters selected20

represent actually 614 trips per day on average. The median number of trips served per day for this21

set of meta-clusters is 756. Also, we note that the demand is extremely regular every day of the22

week (except weekends) for the two weeks of analysis. In the case of an effective implementation23

of optimized lines, it would be interesting for the service to be operated from Monday to Friday.24

The parameters used for DARP are adjusted for each period of one hour. Each centroïd of pick-up25

and drop-off of the meta-clusters are inserted in the sets P and D. The number of vehicles V for26

each period is depicted in Table 2. For each vehicle, its capacity Qk = 80, which corresponds to the27

average capacity of a bus. For each arc (i, j), the cost ci j is defined as the spatial distance between28

i and j. For each node i, we set the service duration di = 2 minutes. The load of each pick-up qi29

is defined as the number of users to serve. The load of each drop off is defined as −qi. A time30

window of 20 minutes is defined to serve the different points. This value is not representative of the31

real difference between the desired service times and the effective times of service, but it provides32

an upper and lower limit that should not be exceeded. If this value is not enough, the constraint33

will often be violated then; no solution will be found. The travel time between two nodes i and j34

12



is estimated according to the results presented is (10). We set the average speed for a vehicle to1

9.65km/h.2

Figure 3.a .b and .c show for each period the a map of the designed routes. Each color designates3

a specific transport line. Table 2 indicates the result of the DARP. For the three periods, routes4

allowing to serve all the selected meta-clusters in less than 9 seconds are found. This result proves5

that the method is a good way to design lines serving many users (more than 600 trips per day on6

average). Besides, for each period, we calculate the average delays and time advances for each7

point served by the optimized tour. This value is estimated by the difference between the wished8

times of departure and arrival (given by the centroïds of the meta-clusters) and the hour of service9

given by the solving of DARP. These values show that the developed method relatively little impact10

on demand. Indeed, on average, the delay is 12 minutes and the advance is 10.6 minutes, which is11

acceptable since the number of users served is high.12

To the best of our knowledge, there are no classical optimization methods to find round serving13

such a quantity of similar and recurrent trips in such a tight timeframe. The theoretical studies on14

DARP (17) show that the exact method used in this paper can solve instance until 36 points. It15

would not be possible to solve instances with so many passengers without using an aggregation16

method in meta-clusters. The existing dynamic methods such as (20, 21, 22) obtain trips delay17

between 2 and 6 minutes; however, these services work with large fleets of vehicles with limited18

capacities (between 2 and 10). Moreover, these methods work only on networks with a limited19

number of nodes.20

Period 1 Period 2 Period 3 Total
Time 08h00 - 09h00 09h00 - 10h00 10h00 - 11h00 08h00 - 11h00
Number of meta-clusters served 8 6 4 18
Number of vehicles required 3 2 1 6
Average delay (min) 16 11 9 12
Average advance (min) 9 12 11 10.6
Total travel distance 36.15 km 19.2 km 12.43 km 67.78 km
Computation Time 6.85 s 1.37 s 0.05 s 8.27 s

TABLE 2 Result of the search of rounds for the 3 time periods from 08h00 to 11h00

13



(a) (b)

(c) (d)

FIGURE 3 (a) depicts the total number of users effectively served in the set of meta-clusters selected in
Section - Selection of the spatio-temporal areas. (b),(c),(d) shows for each period presented in Table 2, the
customized lines found.
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CONCLUSION1

This article presents an optimization method based on a decomposition of the demand and a res-2

olution of DARP on a reduced instance. This data-driven method allows in a first time to identify3

clusters of similar and regular trips over time (meta-clusters). Then these meta-clusters are consid-4

ered as points to serve in an instance of DARP. This method’s main interest is to design tours of5

vehicles to serve a large number of potential users. As shown in Section 4, the main advantage of6

this method is that the execution time of the optimization problem does not depend on the number7

of users served, but only on the number of meta-clusters served.8

As part of this study, the analysis of pattern recurrence was carried out over two weeks. However,9

the proposed method makes it possible to detect regular patterns over much more extended periods.10

This can be particularly useful in the case of effective implementation of transport lines. Besides,11

it is possible to integrate many other parameters into the objective function of DARP to design12

lines as close as possible to actual user demand.13

The results obtained show us that rounds of large-capacity vehicles (80 peoples) can be identi-14

fied. Making it possible to serve on average more than 600 trips per day with calculation times15

lower than 9 seconds. This hybrid method between classical and dynamic approaches allows to16

design high capacity lines based on the real demand of mobility. Moreover, it allows to obtain lines17

with restricted spatio-temporal deviations from the demand described by the centroïds of the meta-18

clusters. Setting up massive lines close to the initial demand of users provides a partial response19

to the last mile problem, which is one of the main obstacle to shifting users of private vehicles to20

shared modes of transport. As we mentioned in the introduction, this study is part of the adaptation21

of current methods to new requirements for the deployment of autonomous vehicles. The method22

presented makes it possible to overcome the incompatibilities between current methods and new23

approaches adapted to the needs of services based on the use of autonomous vehicles.24

Several ways are studied in order to complete the current method. The first is to take real-time25

aspects into account in the method. This can be done in several ways, either with instant classifica-26

tion or by taking into account the results obtained to anticipate future demand. Another interesting27

aspect is the design of more or less dynamic lines according to the demand in a studied area. For28

example, depending on the number of users and the required responsiveness of the service, dif-29

ferent solutions can be implemented: classic or dynamic bus lines, taxi, etc. Finally, taking into30

account the dynamic aspects of the network to choose routes according to the network’s particular31

events: congestion, roadworks, etc. seems to be an excellent way to improve the current method.32

Finally, the method’s scalability will be widely studied to maximize the number of data processed33

and thus the veracity of the results obtained.34

35
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