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Abstract 11 
 12 
Shared e-scooters have appeared quickly and in large quantities, yet little is known about their use. In 13 
this study, we explore spatial drivers of demand for shared e-scooter trips in Louisville (KY). We 14 
estimate a generalized linear mixed model with conditionally autoregressive random effects using 15 15 
months of booking data, points of interests from Open Street Maps and US census data. We find that 16 
population density, the presence of bikeways and university campuses have the strongest positive 17 
effect on shared e-scooter trip destination counts. We find a significant, yet less substantial positive 18 
effect of bus stops suggesting some first/last mile use and hypothesize tourists to be an overlooked, 19 
yet important segment in shared e-scooter demand. 20 
 21 
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Introduction 28 
 29 
Shared e-scooters have surprised many with their sudden and plentiful appearance. In 2018, just one 30 
year after their introduction, ridership in the US alone already surpassed 38M (NACTO 2019). Despite 31 
the popularity these numbers indicate, shared e-scooters have sparked heated debates between citizens, 32 
municipal governments and suppliers about road and curb use, safety and social equity. 33 
 34 
Research to guide policy-making, however, is still in its infancy. This holds particularly true for spatial 35 
aspects of shared e-scooter trips: Where, how and why are they being used? Providing rigorous answers 36 
to these questions can support transport planning and regulation in various ways, such as informing the  37 
extensions of bikeway networks, identifying suitable locations for parking corrals and predicting future 38 
demand. 39 
 40 
In this paper, we first review the extant literature on the spatio-temporal use of shared e-scooters. We 41 
then analyze spatial drivers of demand using a Negative Binomial-distributed generalized linear mixed 42 
model (GLMM) with a random effect following a conditional autoregressive (CAR) correlation model 43 
on e-scooter trip destination count data in Louisville (KY). We close with a discussion of our findings 44 
in the context of the broader literature on bike sharing to identify similarities and differences. 45 
 46 
Our contributions are twofold. First, we identify spatial drivers of demand using a dataset that has not 47 
yet been used before, thus offering lessons on the generalizability of results in comparison to previous 48 
studies. Second, we estimate and compare several Negative Binomial-distributed non-spatial and spatial 49 
generalized linear (mixed) models. This is novel as most previous papers modeling spatial demand of 50 
shared e-scooters either focus on descriptive analyses (Espinoza et al., 2020; McKenzie, 2019), use 51 
(non-spatial) linear regression models (Bai and Jiao, 2020; Hawa et al., 2020) or spatial linear regression 52 
models assuming normally distributed residuals (Arnell et al., 2020; Caspi et al., 2020; Zuniga-Garcia 53 
and Machemehl, 2020) – an assumption that does not hold for (non-negative) count data. 54 
 55 
Literature review 56 
 57 
Several authors have started to analyze spatial drivers of shared e-scooter demand using a variety of 58 
methods. In this Section, we review these contributions grouped by method. First, we summarize studies 59 
giving descriptive overviews only. We proceed with studies using (non-spatial) linear regression models 60 
and finally summarize studies using spatial linear regression models. 61 
 62 
McKenzie (2019) analyzed the spatio-temporal use of shared e-scooters in Washington, D.C. Using 3½ 63 
months of trip data accessed at a 5-min temporal resolution from the openly accessible API, he found 64 
shared e-scooter trips to exhibit a mid-day peak and a (slight) morning peak. He further analyzed trip 65 
starts by land use type finding that ~41% of all trips originated in areas of recreational or public land 66 
use, ~36% in areas of commercial land use and ~23% in areas of residential land use. He concluded by 67 
reiterating Noland’s (2019) hypothesis that a substantial share of e-scooter trips may be of recreational 68 
use. Espinoza et al. (2020) used data accessed at a 10-min temporal resolution from Bird in the city of 69 
Atlanta (GA). They created buffers around origins and destinations of e-scooter trips and counted points 70 
of interests (POIs) within those buffers. Interestingly and in contrast to McKenzie (2019), they found 71 
POIs associated with their ‘business’ category (corresponding to the Google Maps API categories 72 
Accounting, Banks, Business, Car Rental, Embassy, Insurance Agency, Lawyer, Local Government 73 
Office, Real Estate, School) to appear most frequent near trip origins and destinations. Parking, food 74 
(Bakery, Cafe, Restaurant, Supermarket) and recreation (Aquarium, Bar, Casino, Library, Museum, 75 
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Park, Place of Worship, Stadium) POIs also appeared frequently near trip origins and destinations while 76 
public transit stops only showed low counts. One limitation of this study is the missing link between 77 
the number of POIs in a specific category and their relative impact on e-scooter trips. This is addressed 78 
by the studies using regression models surveyed next. 79 
 80 
Bai and Jiao (2020) analyzed e-scooter booking data from Austin (TX) and Minneapolis (MN) using a 81 
(non-spatial) negative binomial regression model on spatially aggregated trip data. They found the CBD 82 
and university campuses to be hotspots in both cities while temporal usage patterns differed (rides per 83 
weekday in Austin showed a peak on Saturdays while they were more evenly distributed in 84 
Minneapolis). Hawa et al. (2020) analyzed e-scooter data from Washington, D.C. using a (non-spatial) 85 
linear regression model on hourly counts of spatially aggregated data. They also found proximity to the 86 
CBD to be an important predictor of demand for shared e-scooters, while it was also positively 87 
correlated with higher population densities and bikeways. Despite yielding first insights, these analyses 88 
have the methodological shortcoming of not accounting for spatial autocorrelation. The independence 89 
condition of explanatory variables is likely violated due to the existence of spatial clusters (i.e., 90 
employment centers, shopping centers, residential areas) or spatial correlation of unobserved effects, 91 
which suggest the use of spatial regression models as employed in the studies surveyed next. 92 
 93 
Arnell et al. (2020) analyzed e-scooter trip origin counts aggregated by spatial bins (500m diameter) 94 
from Nashville (TN) and San Diego (CA) using a spatial lag regression model. They found the most 95 
important predictor of trip starts to be rebalancing points (or e-scooter supply). With increasing distance 96 
from the CBD, origin counts in Nashville decreased (San Diego showed the opposite, yet a much weaker 97 
and less significant effect) and transit stops had a positive influence on origin counts in Nashville (San 98 
Diego, again, showed the opposite, yet a non-significant effect). Caspi et al. (2020) analyzed e-scooter 99 
trip data from Austin (TX) using a spatial lag regression model on spatially aggregated count data. 100 
Methodologically, they removed most cells with zero counts, added one to each dependent variable and 101 
took the natural logarithm of the value to approximate normally distributed residuals. They found most 102 
trips to be conducted in central Austin and to be associated with areas of denser employment and bicycle 103 
infrastructure. Finally, Zuniga-Garcia and Machemehl (2020) used the same dataset from Austin (TX) 104 
to apply a spatial error regression model on e-scooter trip origins and destinations. They found the 105 
University of Texas at Austin to be the strongest and most significant spatial driver of demand (both 106 
for origins and destinations, weekdays and weekends). Population density also had a positive and 107 
significant influence on e-scooter stops and origins as did employment density (yet with a much smaller 108 
coefficient). Most transit-related variables (no. of boardings and alightings, stop density, bus frequency) 109 
had a significant and negative, yet not substantial effect on e-scooter trip stops and origins. 110 
 111 
The latter three studies (Arnell et al., 2020; Caspi et al., 2020; Zuniga-Garcia and Machemehl, 2020) 112 
all employ spatial lag / error linear regression models on count data. Yet, one of the main assumptions 113 
of this type of models is the Normal distribution of residuals which does not hold for count data as it is 114 
non-negative. Transforming the counts (Arnell et al., 2020; Caspi et al., 2020) is one way to address 115 
this limitation. Another way, which has not been explored until now to the knowledge of the authors 116 
yet appears promising, is to use the family of generalized linear (mixed) models which allows for more 117 
flexibility on the distributional assumptions of the residuals, i.e. a Poisson or Negative Binomial 118 
distribution. Using such a model, a transformation of the dependent variable becomes unnecessary. 119 
 120 
In the following, we introduce our data, specify and estimate a conditionally autoregressive (CAR) 121 
generalized linear mixed model (GLMM) using a Negative Binomial (NB) distribution. 122 
 123 
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Data 124 
 125 
We use 15 months (Aug/2018 – Oct/2019) of openly accessible shared e-scooter trip data from 126 
Louisville (KY) (Louisville Metro Government, 2019). Four e-scooter companies are operating within 127 
a 68 mi2 service area: Bird (since Aug/2018), Lime (since Nov/2018), Bolt (since Jul/2019) and Spin 128 
(since Aug/2019). 129 
 130 
The initial number of e-scooter trips in the dataset was 434,582. Several data cleaning steps were 131 
necessary to exclude unrealistic or non-informative trips, such as trips with a distance of 0 or more than 132 
25 miles, durations of 0 or more than 12 hours and average speeds of more than 30 mi/h. 351,514 133 
trips remained. 134 
 135 
We aggregated trip stops by US census blocks within the service area (5’942 blocks) and combined 136 
them with the latest-available block-level census information on population (2010) and employment 137 
(2015), and Open Street Maps (OSM) data on locations for bus stops, The University of Louisville, 138 
restaurants, hotels, stadiums and length of bikeways using QGIS. We further included the area (square 139 
miles) of each block as a control variable as census blocks substantially differ in size. Table 1 shows an 140 
overview of basic statistics for the dependent and independent variables. 141 
 142 
Table 1 143 
Summary of dependent and independent variables per US Census Block used in the regression models. 144 
 145 

 146 
 147 
Figure 1 displays descriptive analyses of the dataset. Shared e-scooter trip starts show clear afternoon 148 
peaks both for weekdays and weekends (Figures 1a, 1b). Many trips are short. The median distance is 149 
~0.8 mi (Figure 1c) and the median trip duration is 9 min (Figure 1d). The share of rentals per weekday 150 
reveals a peak on Saturdays (Figure 1e) and the distribution of number of e-scooter trip stops per block 151 
shows a high share (~24%) of zero observations (Figure 1f). 152 
 153 
  154 

Variable Unit Min 1st Quartile Median Mean 3rd Quartile Max
E-scooter trip stops Count 0.000 1.000 3.000 57.980 20.000 18'203.000
Restaurants Count 0.000 0.000 0.000 0.064 0.000 15.000
Bus stops Count 0.000 0.000 0.000 0.183 0.000 7.000
University of Louisville Count 0.000 0.000 0.000 0.013 0.000 2.000
Hotels Count 0.000 0.000 0.000 0.007 0.000 5.000
Stadiums Count 0.000 0.000 0.000 0.003 0.000 3.000
Population Count (thousands) 0.000 0.004 0.029 0.045 0.057 2.269
Jobs Count (thousands) 0.000 0.000 0.000 0.032 0.004 13.636
Bikeways Miles 0.000 0.000 0.000 0.046 0.058 4.083
Area Square miles 0.000 0.003 0.005 0.011 0.010 1.082
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Figure 1 155 
Descriptive analyses of shared e-scooter trips in Louisville (KY). 156 
 157 

 158 
 159 
Figure 2 displays a map of Louisville with blocks colored by number of e-scooter trip stops. First hot 160 
spots (dark blue, top to bottom) such as the CBD, the Louisville Loop / city-end of the Big Four 161 
(Pedestrian) Bridge, Cave Hill National Cemetery, the University of Louisville and Cardinal Stadium 162 
can be observed. 163 
 164 
  165 

Fig. 1a: Trip starts by hour 
on weekdays

Fig. 1d: Trip distance

Fig. 1b: Trip starts by hour 
on weekends

Fig. 1f: Agg. number of 
trip stops per block
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Fig. 1c: Trip duration

Fig. 1e: Share of rentals 
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Figure 2 166 
Map of Louisville (KY) with census blocks colored by number of e-scooter trip stops and resulting hot 167 
spots. 168 
 169 

 170 
 171 
Methods 172 
 173 
The integrated and aggregated census block-level dataset includes a substantial number of blocks with 174 
0 observed e-scooter trip stops (~24%) and overdispersion (var/mean ~2’310) which suggests using a 175 
Negative Binomial distribution instead of a Poisson distribution. Consequently, we first estimate a 176 
generalized linear model (GLM) and a generalized linear mixed model (GLMM) using the Negative 177 
Binomial distribution (for estimates and summary statistics, see Table 2) in R (packages MASS and 178 
lme4, respectively) using Maximum Likelihood and log link functions. While the GLM already 179 
indicates reasonable explanatory power (Naegelkerke R2: 0.39), the model fit improves substantially by 180 
introducing random effects (AIC GLM: 44633, AIC GLMM: 44078). Yet, the model still exhibits a 181 
significant level of spatial autocorrelation (Moran’s I statistic on GLMM residuals = 0.55,  p = 0.001). 182 
 183 
Spatial autocorrelation can be accounted for by including spatial lags or spatial errors. The rational for 184 
modeling spatial lags is the assumption of a diffusion process (i.e., events in one place increase the 185 
likelihood of similar events in neighboring places) while the rationale for modeling spatial errors is the 186 
assumption of spatial correlation in the error terms (which, in turn, is indicative for omitted spatial 187 
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variables). As Arnell et al. (2020) have shown (and intuition suggests), e-scooter drop-off locations 188 
(“rebalancing points”) are an important predictor of e-scooter trip origins. As vehicle IDs are not 189 
reported in the Louisville dataset and only realized trips are included, we cannot identify ‘juicing-trips’ 190 
(to reload the vehicles’ batteries) and rebalancing points, and thus have to treat supply as part of the 191 
(spatially correlated) unobserved error. This suggests the use of a spatial error model. 192 
 193 
Spatial error terms can be modeled using a conditional (CAR) or simultaneous (SAR) autoregressive 194 
correlation model. CAR-type models (originally introduced by Besag, 1974) account for local spatial 195 
autocorrelation (i.e., only the influence of direct neighbors), while SAR-type models account for global 196 
spatial autocorrelation. As it is reasonable to assume that users will park their e-scooter not much further 197 
than a census block from their final destination, we continue using a Negative Binomial-distributed 198 
GLMM with a random effect following a conditional autoregressive (CAR) correlation model (‘Spatial 199 
GLMM’) of the form 200 
 201 

𝑙𝑛(𝑦) = 𝛼 + 𝛽	X + 𝑢 202 
 203 
Here, 𝑦 denotes the number of e-scooter stops in the 15 months period per census block, 𝛽	X the 204 
coefficients and vector of fixed effects as shown in Table 1, followed by the random effect 𝑢 with a 205 
CAR-type covariance matrix of the form 𝜆(𝐈 − 𝜌	𝚴)23 where 𝚴 is an adjacency matrix between the 206 
census blocks (i.e., a matrix with elements 1 if the blocks are adjacent and 0 otherwise). We estimate 207 
the model in R (package spaMM) using Maximum Likelihood and an ln link function. 208 
 209 
Results 210 
 211 
The estimated spatial GLMM model as well as results for the non-spatial GLM and GLMM models are 212 
shown in Table 2. The spatial correlation structure of the random effect further improves the model fit 213 
from the non-spatial GLMM (AIC: 44’078) to the spatial GLMM (AIC: 38’981). In the following, we 214 
thus focus on the results of the spatial GLMM. It becomes apparent that the area of a census block has 215 
a strong influence (11.28) of the number of e-scooter stops in it (cf. Fig. 2), which was expected. 216 
Population size has the second strongest effect (2.29) on number of e-scooter stops, interestingly much 217 
stronger than the number of jobs (0.33) in a census block. This indicates that a substantial share of users 218 
drive shared e-scooters to their inner-city homes. The length of bikeways in/adjacent to a block has the 219 
third-strongest effect (1.43). Though bikeways may not be destinations per se, this does show that e-220 
scooters are parked substantially more near where they are established. In terms of points of interests, 221 
the University of Louisville is the strongest attractor of shared e-scooters (0.98). Interestingly, hotels 222 
appear to be attractors (0.36), too, indicating that tourists may be form a substantive share of e-scooter 223 
users in Louisville. Restaurants and bus stops also show significant, yet less substantive positive effects 224 
on e-scooter trip stops (0.18 and 0.21, respectively). 225 
 226 
  227 
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Table 2 228 
Estimations results for shared e-scooter trip stops. See Table 1 for a description of the variables. 229 
 230 

 231 
 232 
Discussion 233 
 234 
Our results largely confirm previous results on spatial drivers of shared e-scooter demand and thus add 235 
further evidence to their generalizability. For Louisville, we find that population and bikeways have 236 
particularly strong effects on shared e-scooter stops. This confirms previous findings for Washington 237 
D.C. (Hawa et al., 2020) and Austin (TX) (Caspi et al., 2020; Zuniga-Garcia and Machemehl, 2020). 238 
University campuses have also previously been found to have a substantially positive effect in Austin 239 
(TX) and Minneapolis (MN) (Bai and Jiao, 2020; Zuniga-Garcia and Machemehl, 2020). Interestingly, 240 
this was not true for Washington D.C. (Hawa et al., 2020) which may have to do with its more 241 
diversified city center. We also find bus stops to have a significantly positive, yet less substantial effect 242 
on e-scooter stops than other POIs. Previous studies show mixed evidence for this relationship 243 
suggesting first/last mile usage with positive effects found for Nashville (TN) (Arnell et al., 2020) and 244 
negative effects found for Austin (TX) (Zuniga-Garcia and Machemehl, 2020) and San Diego (CA) 245 
(Arnell et al., 2020). Our results extend previous results by suggesting that tourism (i.e., hotels, 246 
restaurants) may be a driver of e-scooter demand. This appears plausible given the mobility demand of 247 
tourists and the fact that most e-scooter companies allow their users to rent e-scooters in different cities. 248 
 249 
The direction of the effects are further comparable to the effects observed in bicycle-sharing demand 250 
models. Previous literature on bicycle-sharing demand also reported positive effects of population, 251 
workplaces, proximity to central locations (such as university campuses and central business districts), 252 
restaurants and cycling infrastructure (Guidon et al., 2019; Noland et al., 2016; Shen et al., 2018). 253 
While aggregate effects are usually consistent, the effect of population and workplaces can vary in 254 
disaggregate models for specific hours of the day or the weekend (Noland et al., 2016). 255 
 256 
Conclusion 257 
 258 
This paper reports on spatial drivers of shared e-scooter trip destinations in Louisville (KY). Our 259 
results largely confirm previous studies in that population density, the presence of bikeways and 260 
university campuses have the strongest positive effect on counts of shared e-scooter trip destinations. 261 
We find a significant, yet less substantial positive effect of bus stops suggesting some first/last mile 262 

Variable Unit Estimate SE z-value Estimate SE z-value Estimate SE t-value

(Intercept) 2.91 0.03 94.62 1.04 0.04 27.03 0.51 0.05 9.54

Restaurants Count 0.93 0.06 15.86 0.70 0.07 10.52 0.18 0.05 3.50

Bus stops Count 0.41 0.05 8.86 0.39 0.05 7.22 0.21 0.05 4.66

University of Louisville Count 1.22 0.19 6.46 2.20 0.21 10.31 0.98 0.25 3.92

Hotels Count 1.15 0.21 5.45 0.84 0.24 3.53 0.36 0.18 1.97

Stadiums Count 0.97 0.33 2.90 1.42 0.38 3.78 0.19 0.28 0.70

Population Count (thousands) -0.16 0.36 -0.43 0.66 0.43 1.55 2.29 0.36 6.41

Jobs Count (thousands) 1.98 0.09 20.95 0.75 0.11 7.02 0.33 0.08 4.00

Bikeways Miles 5.21 0.26 20.14 2.82 0.30 9.44 1.43 0.24 5.84

Area Square miles 1.20 1.08 1.11 -1.58 1.22 -1.30 11.28 1.10 10.26

ρ 0.12

λ 2.25

n 5'942 5'942 5'942

AIC 44'633 44'078 38'981

Naegelkerke R2 0.39

Marginal log-likelihood -22'306 -22'027 -19'478

GLM GLMM Spatial GLMM
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use. Our results extend previous literature in that they suggest that tourists may be an overlooked, yet 263 
important segment in shared e-scooter demand. 264 
 265 
We suggest future research to further explore the potential link between tourism and shared e-scooter 266 
demand, which can be done through targeted surveys or spatial regression models. For the latter, we 267 
see a particular need for comparative case studies estimating the same models on similar data for 268 
multiple cities. 269 
 270 
References 271 
 272 
Arnell, B.M., P. Noursalehi, E.M. Huntley and J. Zhao (2020) Shared Electric Scooters and 273 
Transportation Equity: A Cross-City Analysis. Paper presented at the 99th Annual Meeting of the 274 
Transportation Research Board, Washington, January. 275 
 276 
Bai, S. and J. Jiao (2020) Dockless E-Scooter Usage Patterns and Urban Built Environments: A 277 
Comparison Study of Austin, TX and Minneapolis, MN. Paper presented at the 99th Annual Meeting 278 
of the Transportation Research Board, Washington, January. 279 
 280 
Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal 281 
Statistical Society: Series B (Methodological), 36 (2) 192-225. 282 
 283 
Caspi, O., M.J. Smart and R.B. Noland (2020) Spatial Associations in Dockless Shared e-Scooter 284 
Usage. Paper presented at the 99th Annual Meeting of the Transportation Research Board, 285 
Washington, January. 286 
 287 
Espinoza, W., M. Howard, J. Lane and P. van Hentenryck (2020) Shared E-Scooters: Business, 288 
Pleasure, or Transit. Paper presented at the 99th Annual Meeting of the Transportation Research 289 
Board, Washington, January. 290 
 291 
Guidon, S., H. Becker, H. Dediu and K.W. Axhausen (2019) Electric bicycle-sharing: a new 292 
competitor in the urban transportation market? An empirical analysis of transaction data. 293 
Transportation Research Record, 2673 (4) 15-26. 294 
 295 
Hawa, L., B. Cui, L. Sun and A. El-Geneidy (2020) Scoot over: Determinants of shared electric 296 
scooter use in Washington D.C. Paper presented at the 99th Annual Meeting of the Transportation 297 
Research Board, Washington, January. 298 
 299 
Louisville Metro Government. Open Data Platform. Louisville, KY, 2019. 300 
https://data.louisvilleky.gov/dataset/dockless-vehicles. Accessed Nov. 25, 2019. 301 
 302 
McKenzie, G. (2019) Spatiotemporal comparative analysis of scooter-share and bike-share usage 303 
patterns in Washington, D.C. Journal of Transport Geography, 78, 19-28. 304 
 305 
NACTO (2019) Shared Micromobility in the U.S.: 2018. Technical Report, National Association of 306 
City Transportation Officials, New York City, NY. 307 
 308 
Noland, R.B. Trip patterns and revenue of shared e-scooters in Louisville, Kentucky. Transport 309 
Findings, 2019. April. 310 



 10 

 311 
Noland, R.B., M.J. Smart and Z. Guo (2016) Bikeshare trip generation in New York City. 312 
Transportation Research Part A: Policy and Practice, 94, 164-181. 313 
 314 
Portland Bureau of Transportation. E-Scooter Findings Report. Portland, OR, 2018. 315 
https://www.portlandoregon.gov/transportation/article/709719. Accessed Sep. 25, 2019. 316 
 317 
Shen, Y., X. Zhang and J. Zhao (2018) Understanding the usage of dockless bike sharing in 318 
Singapore. International Journal of Sustainable Transportation, 12 (9) 686-700. 319 
 320 
Zuniga-Garcia, N. and R. Machemehl (2020) Dockless Electric Scooters and Transit Use in an 321 
Urban/University Environment. Paper presented at the 99th Annual Meeting of the Transportation 322 
Research Board, Washington, January. 323 


