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ABSTRACT 

Massive Floating Car Data (FCD) datasets have become available for roadway networks, which 

contain travel time information on short spatial intervals between pairs of successive 

observations along individual trips. This paper brings about a stochastic model of travel times 

with a Maximum Likelihood estimation method to exploit FCD material. Probabilistic 

specifications are put forward for link travel times as Gaussian random variables along with 

standard error of each estimator. This allows for simple estimation of link attributes based on 

“Link FCD intervals” and their confidence intervals. An application instance is dealt with for 

one motorway and one urban avenue in the Grand Paris area with results showing better 

accuracy than automotive methods based on pointwise average speed.  
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INTRODUCTION 

Roadway networks are purported to be travelled along by different kinds of vehicles. On any 

usage occurrence, the individual user makes his or her trip along a selected path. The path travel 

time is a major characteristic as the path costs time to its individual user: it is usually the main 

basis for path choice and also for departure time choice and travel mode choice (Ortuzar and 

Willumsen, 2004). Automated personal travel assistants such as Google Maps, Waze and so on 

provide path advice on the basis of local travel time as the first and foremost criterion. Thus, 

local travel times determine path choice, hence the formation of trip flows and in turn the local 

traffic conditions. At the same time, with the great diffusion of GPS technology, massive 

Floating Car Data datasets have become available for roadway networks. They contain travel 

time information on short spatial intervals between pairs of points that are successively 

recorded along individual trips, which enables to recover local traffic characteristics.  

Travel time estimation as a key factor in understanding traffic patterns has been a 

recurrent research issue in the last few decades. Many well-established technologies have been 

developed based on loop detectors, vehicle diaries and video cameras (Mori et al., 2015). 

However, those traditional data collection methods, are inherently limited for wide application 

concerning its spatial-temporal coverage (Sun et al., 2014). Most recently, with the increasing 

diffusion of GPS technologies, Floating Car Data is emerging as massive available for 

collecting traces of a wide range of network all day long, which shows a great potential to 

resolve the data concern in travel time estimation (Jenelius and Koutsopoulos, 2013). Although 

much more attention has been aroused recently to studying FCD for traffic analysis, the 

literature for it on travel time estimation is still limited, in particular on the use of low-

frequency floating car data, a more practical trend for the data source nowadays (Jenelius and 

Koutsopoulos, 2013; Mori et al., 2015).  

This paper focuses on the local travel time estimation on the link level. In the literature, 

the current studies can be generally divided into two streams: data-based approaches and 



model-based approaches. For the prior ones, taking the average/median of all observed points 

to recover space-mean speed for link travel time estimation is widely adopted in many FCD 

based studies (Cheng et al., 2015; Ehmke et al., 2012; Fusco et al., 2016; Long Cheu et al., 

2002; Ran et al., 2016; Shen and Ban, 2016; Wang et al., 2015). To be simplistic, we define 

this way as “pointwise average speed”. This method has the advantage of being straightforward 

but is limited to the case when there are sufficient observations over the targeted areas. As for 

the model-based approaches, a few studies built probabilistic graphical models from observed 

probe traces to obtain the travel time probability distributions in terms of a series of spatial and 

temporal traffic variables. A Bayesian Network was proposed by Hunter et al. (Hunter et al., 

2009) for structuring the probabilistic model using low-frequency sparse taxi probe data to 

estimate the historical link travel time distributions. Development of such an approach was 

conducted by Hofleitner et al. (Hofleitner et al., 2012a) to focus on travel time forecasting, 

which proposed a dynamic Bayesian network model to model the state transition between 

neighboring segments. In another study by Hofleitner et al. (Hofleitner et al., 2012b), the 

authors did a further development by incorporating the traffic physics, the flow theory and state 

variables considering the number of querying vehicles and turning fractions at intersections. In 

addition to the Bayesian network, Ramezani and Geroliminis (Ramezani and Geroliminis, 

2012) proposed a Markov chains model to estimate the arterial route travel time distribution. 

Other than probabilistic models, a study by Jenelius and Koutsopoulos (Jenelius and 

Koutsopoulos, 2013) developed a statistical regression model based on taxi probe vehicle data 

to estimate the travel time on urban road network as well as analyzing the impacts of the 

corresponding influencing variables. 

Although such models have the advantage to take many comprehensive factors into 

account, they also require more external data in terms of the physical and spatial parameters to 

express the functions more precisely, which limits the large-scale applicability. In the 

meantime, the complexity of model structuring also restricts the transition to other cities for 

the variance of network structure and huge computation workload. Another persistent issue in 

most of the existing studies is the lack of a measure of reliability in the travel time estimation 

(Mori et al., 2015). Confidence intervals rather than just a unique value of average time would 

be especially helpful to provide a more complete information to the road users. 

Acknowledging the needs to address the above-mentioned problems, this paper aims to 

build a stochastic model of local travel times together with a Maximum Likelihood estimation 

method to exploit FCD material. Probabilistic specifications are put forward for link travel 

times as Gaussian random variables. This allows for simple estimations of link attributes based 

on “Link FCD intervals”. Analytical properties are to be obtained specifically at sub-links 

along with variance models dealt with postulates. An application study is dealt with for a major 

motorway segment as well as an urban link for comparison in the Grand Paris area. 

 

METHODOLOGY 

In the stochastic model, the travel time is analyzed as a random variable that adds up local 

random variables that involve local characteristics: we introduce a set of assumptions and 

derive some theoretical properties, including a Probability Density Function (PDF) for the 

travel time. At the link level, the local characteristics include the mean and standard deviation 

of local speed. This is for homogenous sections excluding link endpoints.  

The estimation method takes the travel time PDF as a likelihood function for field 

observations of individual travel times. The network framework enables us to gather large 

samples of individual trips and extract the associated information by using an ad-hoc method 

of Maximum Likelihood Estimation. As for application instance, we have availed ourselves of 

an FCD dataset provided by the Coyote firm: car trajectories are monitored with one 



geolocation time stamp per half minute. Every pair of two successive individual timestamps 

contains information on the network conditions in-between. Our method to exploit such 

information is complementary to the link time estimation methods based on instant speeds 

monitored at timestamp points (Cheng et al., 2015; Long Cheu et al., 2002). 

Let us consider travel times hhh −  between point pairs ( MM,  ) along link a , 

separated by spatial length sss − . We model any h  as a random variable, with 

stochastic characteristics that depend on the link conditions and the associated parameters. Our 

modelling assumptions are:  

• (L1) that the average time ]E[ h  is proportional to the spatial length s , with factor 

coefficient a : 

sh a= ]E[  

• (L2) That the variations of the travel time come from a stochastic process along space 

with autocorrelation function ),( ssa  : then, 

),(][V ssh a =  

Special instances will be considered to make the model simpler. Our basic specification is that 

local variations are mutually independent and identically distributed per unit of distance: then, 

denoting by a  the standard deviation of local variations (per length unit), it holds that 

sh a = 2][V . 

The reason is that the variance of the sum of independent local variables is the sum of their 

respective variances, therefore leading to linear dependence according to length s  under the 

assumption of homogenous distribution. The product form relies upon the hypothesis that 

successive intervals are statistically independent. Under the Gaussian assumption, the 

likelihood function of a link interval is simply: 
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We obtained analytical formulas joint the Maximum Likelihood estimation of the 

average time and variance parameters, as well as the standard error of estimation associated to 

each estimator. All formulas are easy to calculate so that the estimation method is 

straightforwardly applicable, and its accuracy can be controlled.  
 

APPLICATION AND RESULTS 

Study Location 

The proposed method was applied on two different roadway segments, with the aim to compare 

the experimental results between highway setting and urban setting. The highway segment was 

selected from a major link along the motorway A4 in Great Paris region, which performs as a 

main arterial serving the traffic between the center and eastern sub-regions. The urban segment 

is chosen from on the Avenue Foch, which a major avenue in Paris. Geographical layouts are 

shown as in Figure 1. Travel time of the two-directional movement was studied separately. No 

ramp access or intersection was included in this application as the model focuses on the link 

travel time. The segment length is 1445m and 1635m for the eastbound and the westbound 

direction respectively on the A4 motorway segment, and 607m for both directions on the urban 

segment. 



 
(a) Segment along A4 motorway                         (b) Segment along Avenue Foch (urban setting) 

Figure 1 Studied roadway segments 

Data Set 

The FCD was obtained by onboard GPS devices from Coyote, which is a major roadway 

navigation service provider in France. The raw FCD is organized by a sequence of vehicle logs, 

each of which represents an instantaneous trace of a vehicle, containing its location, time stamp, 

speed and travelling direction etc. The sampling frequency is around 30s subject to the variation 

of signal transmission condition. Data over two normal weekdays (February 05 and February 

06, 2019) on the selected segments were analyzed. The network roadway data were extracted 

from OpenStreetMap. Due to imperfect recording of GPS coordinates, the deviation between 

FCD points and road network is quite common. Numerous effective map-matching algorithms 

were developed by previous studies (Liu et al., 2017; Newson and Krumm, 2009). In this study, 

the FCD was map-matched to the nearest roadways according to the travelling directions and 

re-projected the locations to the nearest foot-points on the segment.  

Link Interval Extraction 

Link intervals along the segments were extracted for the two directions in two days 

respectively. Each interval consists of a pair of two successive FCD timestamps. Distance 

travelled along the road to the starting node was also calculated based on geo-coded coordinates 

using geo-packages in Python. Anonymized vehicle ID was used to track different vehicles. 

Invalid pairs were excluded if the trajectory time span was abnormal, setting the rule as less 

than 300s considering consecutive sampling frequency is around 30s. Tolerance was made for 

in-stable signal condition. A descriptive summary of extracted intervals and all the point-wise 

observations is given in Table 1. 
 
TABLE 1 Descriptive summary of extracted intervals 

Setting Eastbound 05 Eastbound 06 Westbound 05 Westbound 06 

A4 Link intervals (count) 1248 1327 2014 2073 

 Pointwise observations 3472 3605 4401 4416 

 Average speed overall  96.7 km/h 93.0 km/h 91.5 km/h 86.5 km/h 

AF* Link intervals (count) 787 983 452 464 

 Pointwise observations 1364 1692 1019 1117 

 Average speed overall  23.7 km/h 24.1 km/h 36.7 km/h 34.5 km/h 

*AF stands for Avenue Foch  

Link Analysis Resutls 

The stochastic parameters of the link model were estimated based on the extracted data by 

different time of the day. Besides, the corresponding pointwise average speed was also 

computed. To measure the reliability of the estimation, confidence intervals were computed 



stemming from those estimated parameters. As a result, line-charts were plotted to shows a 

detailed comparison between the interval estimation of PDF link model and the point-wise 

estimation for both the two segments, shown in Figure 2. Space mean speed was used for the 

comparison in the plot, as for a given length, modeling space mean speed is essentially 

equivalent as modeling the link travel time (Hall, 1996; Mori et al., 2015). 

As can be seen from the two plots, the space mean speed estimated by the interval 

estimation is generally consistent with pointwise average speed with a similar fluctuating trend. 

Significant speed reductions were observed on the motorway segment during peak hours along 

the tidy movement to and from the city center. The urban segment was observed with less 

fluctuation but overall with relatively low speed. However, the interval estimation was found 

more likely to estimate a lower speed than pointwise average especially on the urban segment 

which involves more congested scenarios with higher variation in vehicular motion. Moreover, 

the confidence intervals were significantly narrower than those of pointwise average speed for 

most of the situations, which indicates that the interval estimation could provide a more reliable 

estimation of the travel time. It was also found that the more data available, the more precise 

results on the estimation. Nevertheless, the interval estimation would require less data to reach 

a higher precision level. 

 

 
(a) A4 motorway segment 



 
(b) Avenue Foch urban segment 

Figure 2 Result comparision between the interval estimation and the pintwise average 

estimation 

 

CONCLUSION 

This paper puts forward a stochastic model of local travel time estimation along roadway links 

on the network. Basic modeling assumptions were postulated to model link travel times as 

random variables. Building upon the stochastic model, we have devised a Maximum 

Likelihood estimation method that can be applied to FCD trajectories along the network. 

Intervals in time and space between two successive timestamps monitored along the trajectories 

constitute the basic data. The practicality of the estimation was demonstrated in a case study. 

Estimations were computed and compared between our stochastic model and straightforward 

conventional pointwise average method along with confidence intervals. Results indicate that 

the stochastic model is able to deliver a more reliable estimation and require fewer observations 

to reach a higher precision. Moreover, the pointwise average estimation was found tending to 

provide a higher speed than the stochastic model with less certainty. This may lead to an 

underestimation of the travel time, implicating the limitations of the current applications 

adopting such a straightforward estimation. 

This research is restricted to the link level. However, it could be saved as a modular 

section. Further research may be invested to build the probabilistic model for node or 

intersections between different links so as to develop more reliable estimation of path travel 

time. 
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