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1 Introduction

The time spent waiting at a station platform prior to boarding is considered by passengers
to be one of the most onerous phases of a transit journey. In terms of the generalised cost
of travel, the value of platform wait time is typically weighted at least twice as much as the
value of uncrowded in-vehicle time (Wardman et al., 2016). Transport for London applies
a higher weighting of 2.5 for wait time, compared to a base weighting of 1 allocated for
in-vehicle time in uncrowded conditions (Transport for London, 2013). Wait time therefore
incurs at least double the amount of disutility to passengers as when they are travelling
on empty trains. Therefore, to deliver a high quality of service, quantifying the underlying
drivers of fluctuations in wait times is essential.

Train frequency is a primary determinant of passenger wait time (Newell, 1982; Osana
and Newell, 1972). In the literature, the consensus is that passenger arrival patterns are
influenced by train frequency levels. When train frequencies are high in peak times, passen-
gers arrive in a random manner, resulting in an average wait time equivalent to half of the
headway between trains. As service frequency decreases in off-peak periods, passengers tend
to arrive in a non-random manner in order to minimise their wait times. In the most recent
empirical work on rail transit covering both high frequency metro and low-frequency subur-
ban rail modes, the transition from random to non-random passenger arrivals is reported to
occur in the range from 5 to 11 minute headways (Berggren et al., 2019; Ingvardson et al.,
2018; Fan and Machemehl, 2009; Luethi et al., 2007). With increasing access to advanced
train arrival information available through open source data online and via mobile phone
applications, the transition to timed passenger arrivals may occur at shorter headways.

In this paper, the prevailing hypothesis that passenger wait times tend to decrease at
longer train headways as passenger arrivals transition from random to non-random is tested,
using the London Underground metro system as a case study. Automated fare collection
(AFC) data from the Oyster card system and automated vehicle location (AVL) data on
train movements are used. Three parts of analysis are undertaken to establish the effect of
headways on passenger wait times at the origin station as follows:

1. Total passenger journey times are decomposed via a probabilistic passenger to train
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assignment algorithm to calculate passenger access time, the time taken from passen-
ger tap-in to train boarding at the origin station.

2. Semiparametric regression modelling is undertaken to determine the partial effect of
headways on access times while conditioning on other service supply and passenger
demand characteristics.

3. The effect of headways on marginal passenger wait times is then isolated and quanti-
fied.

Marginal passenger wait times with respect to train headways are calculated in two-step
process. First, expected values of access time with respect to train headway are calculated
from the outputs of the semiparametric regression model of access times. This generates a
relationship which can be considered analogous to a exposure-response function, a model
framework commonly applied in the medical toxicology literature (Haschek et al., 2013;
Wang, 2015). In this case, access time is the response and headway is the exposure. Second,
the derivative of access time with respect to headway is calculated via finite differencing.
This quantity is demonstrated to be equivalent to marginal wait time with respect to head-
way. Through this process, the passenger arrival process is able to be characterised and the
point at which arrivals transition from random to non-random across three high frequency
lines in central London is established.

The derivation of the exposure-response function of marginal wait times with respect to
headway is a new methodological contribution to the literature on transit wait times. In the
literature, models exploring the relationship between wait times and headway rely on direct
measurement of wait times through observation of samples of boarding passengers at station
platforms or from passenger stated preference survey data. Parametric functional forms are
assigned to the wait time data, and inferences are then made regarding passenger arrival
and wait time patterns (O’Flaherty and Mangan, 1970; Seddon and Day, 1974; Bowman
and Turnquist, 1981; Luethi et al., 2007; Nygaard and Torset, 2016; Ingvardson et al., 2018).
In this paper, revealed preference data on passenger trips and train movements from AFC
and AVL data sources are used, and the relationship between wait times and headways
is mathematically derived. The paper demonstrates that the mathematical derivation of
marginal wait times generates valid results for the London Underground metro system, and
so the method can be readily applied to other systems to infer wait time patterns from
routinely collected automated data.

2 Data

Selected sections of the Central, Jubilee, and Victoria lines on the London Underground
are analysed as follows: the entire length of the Victoria line (16 stations); West Acton to
Oxford Circus on the Central line (12 stations); and Bond Street to North Greenwich on the
Jubilee line (10 stations). The routes on the line represent single-line trips only excluding
transfers, and the line sections are chosen such that route choice decisions do not need to be
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made under regular operating conditions. Since the line sections cover some of the busiest
routes in central London, the passenger data capture a mix of regular work commuters,
school children, tourists, and others.

Passenger trip data and train movement data over a period of 7 weeks from October to
December in 2013 are used, focusing on weekday travel (Monday to Friday) only. The pas-
senger trip data are recorded via the Oyster smart card system, and include the timestamps
and locations of each trip between the origin and destination stations. The train movement
data are recorded by the internal TfL NetMIS system and include departure timestamps
and locations of each train movement at each station platform.

3 Methods

The journey times from the AFC data set report total journey times from tap-in at the
origin station to tap-out at the destination station, and so to enable the journey times to
be split into parts, passengers must first be allocated to trains. This is achieved by merging
the AFC trip data with the AVL train movement data and applying a probabilistic train
assignment algorithm based on the egress times associated with each feasible train itinerary.
Full details of the assignment algorithm are not presented here but are available in Singh
et al. (2018).

Through assignment of all trips to unique train itineraries, the total journey times of each
trip are decomposed to obtain the access time component. The access time yacij associated
with each trip i assigned to train itinerary j is the time taken from passenger tap-in at the
origin station tentryi to the point where the train departs from the origin station platform
DToj , i.e. yacij = DToj − tentryi .

A semiparametric regression model with access times set as the response is then devel-
oped as detailed in section 3.1, and marginal platform wait times are estimated from the
outputs of the access time model as presented in section 3.2.

3.1 Access time regression model

To exploit the large volume of data, a semiparametric regression model framework is
adopted. Semiparametric regression enables non-linear relationships between the indepen-
dent and dependent variables to be modelled via basis functions in the form of penalised
thin plate regression splines. The basis functions are fitted including a penalty to impose a
trade-off between the degree to which the spline functions match the data and the degree of
smoothness. Further details of the underlying theory are given in Wood et al. (2015) and
Wood (2006). The modelling is undertaken using the R statistical software package ‘mgcv’.
The models are fitted using penalised iteratively reweighted least squares (PIRLS) and the
restricted maximum likelihood (REML) technique is used to estimate the parameters of the
models.

For each passenger trip i assigned to train itinerary j, an access time regression model
can be formulated as a function of headway hij and other service supply and demand
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covariates Vij , and estimated model parameters θ̂:

yacij = m(hij , Vij , θ̂) + εij (1)

where yacij is the access time component, and εij is the random error term, assumed to be

independently and identically distributed with mean 0 and given variance σ2
ε , such that

εi ∼ N (0, σ2
ε ).

The headway and other service supply and demand covariates are modelled by applying
the following forms: continuous variables are modelled with either a parametric or non-
parametric form, and categorical factors are modelled with group-specific fixed effects. The
general form of the access time regression model is therefore expressed as:

yacij = α+XT
ijβ +

K∑
k=1

fk(X
∗
ij) + ZTiju+ εij , (2)

where

α is the model constant,

β are the parameter coefficient estimates for the continuous covariates Xij modelled
parametrically,

fk, k = 1..K are the smooth basis functions based on penalised thin plate regression
splines of the continuous covariates X∗

ij modelled non-parametrically,

u is a vector of estimated group-specific fixed effects for the categorical factors Zij ,
and

yacij and εij are as previously defined.

The data set for the regression model consists of all trips within the defined study area,
totalling approximately 5 million trips. The continuous covariates and fixed effects included
in the model are listed in Table 1.

Table 1: List of covariates and fixed effects in access time regression model

Service supply covariates Demand covariates
Dynamic Static Passenger volumes Passenger characteristics

Headway Fixed effects for Platform loading Passenger age
COV headway stations, and Line loading Card type
Normalised headway line/direction Discount
Time of day Travel frequency

Egress time
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3.2 Derivation of marginal platform wait times

There are two distinct phases of passenger movements within the access time component:
1) the time taken to walk from the ticket gates to the platform, twalkoi and 2) the wait time
at the platform before boarding, wij . Based on this, the access time yacij , can therefore be
expressed as per equation 3. In the access time model, walk times are quantified through
fixed effects that capture the station- and line/direction-specific characteristics, and the
passenger demand covariates.

yacij = wij + twalkoi (3)

For calculation purposes, equation 3 can be expressed in terms of the expectations of
the variables:

E[yacij ] = E[wij ] + E[twalkoi ] (4)

After having taken into account all other variables in the access time model, if the sole
influence of headways hij on access times is analysed, the derivative of access time with
respect to headway is:

∂E[yacij ]

∂hij
=
∂E[wij ]

∂hij
+
∂E[twalkoi ]

∂hij

=
∂E[wij ]

∂hij

(5)

Passenger walk times are independent of the headway between trains, and so in equation

5, the rate of change in passenger walk times with respect to headways
∂E[twalk

oi ]
∂hij

is omitted.

The derivative of access time with respect to headways therefore primarily represents the

marginal wait time at the platform
∂E[wij ]
∂hij

.

Two steps are involved to compute the derivative of access times with respect to head-
ways. First, predicted values of access times with respect to headway are required, and
these can be extracted from the regression model of access times from equation 1, i.e.:

ŷacij = m(hij , Vij , θ̂) (6)

where ŷacij is the predicted value of the access time regression function conditional on
headway, the remaining supply and demand covariates denoted collectively by Vij , and the

model parameter estimates denoted collectively by θ̂.
Second, finite differences between each pair of sequential data points are then required

to be taken in order to compute the derivative of access times with respect to headways.
Due to the large number of observations and high levels of dispersion in the predicted values
generated from the access time model, the finite differences between a set of two consecutive
individual points contain extreme outlying values which tend to artificially skew the results.
In order to smooth out the outliers, the mean of the predicted values is calculated for a fixed
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value of headway at 1 second intervals. The 1 second interval corresponds to the equivalent
level of accuracy in the train movement data timestamps. Repeating this calculation for the
range of headways observed allows the generation of an exposure-response function, where
headway is the exposure variable and the expected value of access time is the response.
The calculation of the exposure-response function of expected access times with respect to
headway is given in equation 7.

E[yac(h)] =
1

n

hc=h+(1/60), ij=n∑
hc=h, ij=1

ŷacij (hc) (7)

where E[yac(h)] is the expected value of access times with respect to headway h in
minutes. The term ŷacij (hc) represents predicted values of access times for passenger trip i
assigned to train itinerary j at a given point value of headway hc. The summation refers
to the summation of access times across all n number of passenger and train itinerary
combinations ij over a 1 second interval of headways from hc = h to hc = h + (1/60)
minutes. The bounds for headway are defined from h = 1 to h = 9 minutes 59 seconds,
which represents approximately 99% of observations in the raw data set after excluding
upper and lower outlying values of headway.

The second step is the estimation of the derivative of access times with respect to
headways. The derivative is estimated through a discrete approximation by computing finite
differences between the average predicted values calculated in equation 7. This process is
undertaken for the total data set, and separately for peak and off-peak periods. Four models
are estimated, segmented by time period: 1) all time periods, 2) peak of the AM peak, 3)
inter-peak, and 4) peak of the PM peak. The equation for calculating the derivative from
the average predicted values is given in equation 8.

∂E[yac(h)]

∂h
=
E[yac(h+ a)]− E[yac(h)]

(h+ a)− h
(8)

where E[yac(h)] is the expected value of access time with respect to headway h as
calculated per equation 7, and a is a small finite increment.

4 Results

The marginal wait time functions with respect to headway are plotted in Figure 1. In the
literature, the prevailing consensus is that for high frequency services, passengers arrive
randomly with a uniform random distribution. Under perfectly random conditions, the
average passenger wait time (w) is equivalent to half of the headway between trains, i.e.
w = 0.5h = 0.5f−1, where h is train headway and f is the frequency of services. Under
such conditions the marginal impact of headway on waiting time should remain 0.5, no
matter what the initial frequency is. As shown in Figure 1, when headways are less than
approximately 2-3 minutes, the impact of a change in headways is much greater than half of
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Figure 1: Marginal wait time with respect to headway

the headway. This outcome could be a consequence of station congestion and the possibility
of denied boarding.

In low frequency periods, literature suggests that passenger wait times are less than
half of the headway between trains i.e. w < 0.5h. In Figure 1, when headways are longer
than approximately 2-3 minutes, the models predict that the average passenger saves less
time than half of the headway. This finding is in line with the literature for wait times
at long headways, albeit at lower values of headway compared to the conventional rule of
thumb of a 10 minute headway transition value. Considering all trips together, passengers
arrivals tend to become non-random at a headway of 2.35 minutes, and approximately
55% of passengers experience marginal wait times less than half of the headway. For those
passengers that experience marginal wait times less than 0.5, the average marginal wait
time is approximately 0.30, or almost one third of the operating headway. Considering
the different time periods, the inter-peak function is equivalent to 0.5 at a headway of 2.10
minutes, and 78% of trips have marginal wait times less than half of the headway. In the AM
and PM peak times, the functions cross 0.5 at longer headways of 2.50 and 2.98 minutes,
respectively. This likely reflects a higher degree of congestion during the peaks compared
to the inter-peak. A much lower percentage of trips, approximately 31% and 21%, of trips
made during the AM and PM peaks respectively have marginal wait times less than half of
the headway.

Wait times below half of the headway are likely to be caused by the fact that, on average,
passengers do not arrive at the station randomly. A potential explanation for this could be
that when the system is operating at longer headways, the system is also less congested,
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and this enables passengers to move more freely through stations. The reduced levels of
congestion may better enable passengers to speed up when they are aware of an approaching
train. Awareness may arise from real-time train arrival information on digital information
display boards at the station prior to entry, from mobile phone applications, and/or from
hearing and seeing the train approach en route to the platform.

5 Conclusions

In this paper, the impact of headways on passenger wait times on urban metro systems is
derived. The analysis is undertaken for single-line trips excluding route choice and transfer
options on three lines of the London Underground metro system. It is found that wait times
are more impacted by changes to service frequency during high frequency operating periods,
compared to low frequency operating periods. The results indicate that passenger arrival
patterns transition from random to non-random as headways increase, and that marginal
wait times for non-random arrivals are equivalent to approximately one third of the headway
between trains. This observed behaviour could be a result of passengers consulting train
arrival information prior to boarding, and if so, this would demonstrate that generalised
travel time savings can be achieved through providing improved passenger information.

Extending the analyses presented here, a number of future research directions are possi-
ble. The observation of missed boardings at short headways could be further investigated to
better understand potential generalised time benefits of capacity improvements. In terms
of spatial scale, the data could be segmented at route, station, and line levels or by pas-
senger demographics to obtain wait time patterns at a more disaggregate level. At a wider
spatial scale, all methods presented here could be aggregated at a network level to enable
comparisons of passenger arrival patterns and wait times across different systems.
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