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1 Context

Stated choice (SC) is a popular survey design for studying choice behaviour, especially
in Transport research. This methodology has been used for several decades across many
other areas of research, including marketing, health as well as environmental and re-
source economics (Carlsson, 2011; Hensher, 1994). A key application of SC data and the
subsequent estimation of discrete choice models is the derivation of monetary valuations,
commonly referred to as Value of Travel Time (VTT) or Willingness-To-Pay (WTP)
measures. These look at the monetary value that respondents place on a unit change in
the characteristics of products or alternatives.

An essential issue in SC surveys is whether the same sensitivities drive choices in all
choice tasks (CTs) and to what extent is it something practitioners should worry about.
Indeed, a typical SC survey consists in asking respondents to complete a series of CTs
where they must each time state which alternative they prefer among a finite set. Re-
peating the choice exercise several times allows an analyst to collect more information
on respondents’ preferences and the trade-offs they make. Specific concerns have been
raised about whether the taste parameter estimates are the same for all CTs. However,
most of the research work carried out about this topic has relied on CT specific multi-
nomial logit models (MNL) (Czajkowski et al., 2014), where taste heterogeneity is not
specified as random across the population.
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In what follows, we demonstrate that a conservative approach such as using CT spe-
cific MNL models (Czajkowski et al., 2014) might lead an analyst to erroneously conclude
that preferences are stable across CTs. We propose to estimate MMNL models with CT
specific covariates to capture differences in fixed rand random coefficients across CTs.
We argue that MNL models are unlikely to capture the shifts in parameters across CTs
adequately and that the inclusion of random parameters may lead to different insights.
We focus on the differences between the first CT and the subsequent ones instead of
assessing whether all the CTs are different from one another. There are two reasons
for this: there is a strong focus on the properties of the first CT in various fields, and
estimating MMNL models with CT specific parameters for all CTs is computationally
too intensive and can lead to severe identification issues. Using four different datasets
from the transport and environment literature1, we estimate for each dataset a MMNL
where the mean and the standard deviation of each randomly distributed parameter is
different for the first CT and the subsequent ones. Moreover, a Cholesky decomposition
allows to measure whether the distributions for the first CTs and the subsequent ones
are correlated. Such a specification essentially allows us to measure whether there are
differences between the first CT and the others without taking a position as to what
drives these differences.

2 Modelling work

We build our models step by step and start by describing the well-known MMNL speci-
fication. Let Uint be the utility that respondent n derives from alternative i in CT t. It
is made up of a modelled component Vnit and a random component εint which follows a
type 1 extreme value distribution. We have:

Uint = Vint + εint (1)

Vint = ASCi + β′nxint (2)

where βn is a vector of taste coefficients and xint a vector of attributes for alternative
i. In addition, we include alternative specific constants (ASCs) for all but one of the
alternatives. As a result, the probability that respondent n chooses a given alternative i
conditional on βn and the ASCs in choice situation t corresponds to the MNL probabilities

Pint(βn) =
eVint∑J
j=1 e

Vjnt
(3)

1We only report results for one dataset in this abridged version. The full paper features results from
the four dataset mentioned.



Crastes dit Sourd et al. 3

The elements in βn can be allowed allowed to vary randomly across respondents (ex-
cluding the ASCs), using a joint distribution f(βn|Ω), where Ω is a vector of parameters
to be estimated, relating to the means and covariance structure of the elements in βn.
More precisely, for each one of the k elements in βn we use the following specification:

βkn = µ1k + σ1kζ1kn (4)

where µ1k corresponds to the mean and σ1k the standard deviation of the random
parameter. ζ1kn is a random disturbance distributed N(0, 1). Indeed, as the actual
value of βn for a given respondent is not observed by the analyst, the choice probabilities
are given by a multi-dimensional integral of the MNL probabilities described in Equation
5. The probability of the sequence of choices observed for person n is given by

Lnt =

∫
βn

T∏
t=1

Pnt(βn)f(βn|Ω)δβ (5)

where Pnt corresponds to the probability of respondent n choosing the alternative that
he was observed actually to choose. Our second model allows for differences in the means
of the randomly distributed taste parameters when CT > 1:

βkn = µ1k + σ1kζ1kn + µ2k · (CT > 1) (6)

where µ2k corresponds to a shift in the mean when t > 1 and CT > 1 is an indicator
function which takes the value 0 for the first choice task and 1 for all others. The
remainder of the model is specified the same as the base MMNL. Finally, we propose a
specification which allows for differences in both fixed and random parameters between
the first CT and the subsequent ones. We use:

βkn = µ1k+

(σ1kζ1kn) · (CT = 1)+

(µ2k + σ2kζ1kn + σ3kζ2kn) · (CT > 1)

(7)

where µ1k now corresponds to the mean and σ1k the standard deviation of the random
parameter when t = 1 (CT = 1 is an indicator function which takes the value 1 for the
first choice task and 0 else). ζ1kn is a random disturbance distributed N(0, 1). Moreover,
µ2k corresponds to a shift in the mean when t > 1 and σ2k and σ3k capture the random
heterogeneity in preferences. ζ2kn is another random disturbance distributed N(0, 1).
This specification not only allows to capture shifts in the mean but also differences in
terms of random heterogeneity between the first CT and the subsequent ones. It is worth
noting that we allow the random heterogeneity in the first CT and the random hetero-
geneity in the subsequent ones to be correlated which is why the random disturbance ζ1kn
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enters the utility for both t = 1 and t > 1. Models are estimated in Willingness-To-Pay
Space (WTPS). We estimate five models:

� Model A: MNL model

� Model B: shifted MNL model

� Model C: MMNL model

� Model D: Shifted MMNL model

� Model E: Shifted MMNL model with CT specific random heterogeneity

Table 1: Model specifications

Model Specification Choice task

Model A βk = µ1k All

Model B
βk = µ1k CT1
βk = µ1k + µ2k CT > 1

Model C βk = µ1k + σ1kζ1kn All

Model D
βk = µ1k + σ1kζ1kn CT1
βk = µ1k + µ2k + σ1kζ1kn CT > 1

Model E
βk = µ1k + σ1kζ1kn CT1
βk = µ1k + µ2k + σ2kζ1k + σ3kζ2kn CT > 1

3 Framework for empirical tests

3.1 Model fit impacts

We first compare whether allowing for different sensitivities across CTs improves model
fit by comparing model A to model B, model C to model D and E and model D to model
E using likelihood ratio tests. LLA corresponds to the log-likelihood at convergence for
model A and the same notation applies to the other models. We compute −2(LLB −
LLA) ∼ χ2

R−1, −2(LLD−LLC) ∼ χ2
R−1, −2(LLE−LLC) ∼ χ2

R−1 and −2(LLE−LLD) ∼
χ2
R−1 where R corresponds to the number of parameters for each model.

3.2 Welfare estimates

Secondly, we investigate whether the mean and the standard deviation of the welfare
estimates are the same for the first CT and the subsequent ones depending on whether
random heterogeneity is considered or not. More precisely, we compute WTP or Value
of Travel Time (VTT) estimates for each model specification and group of CT (first one
and subsequent ones) and investigate whether:
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1. different model specifications lead to differences in the mean. Mean welfare esti-
mates are compared within and across models using T-tests.

2. the difference between the first CT and the other ones for each attribute differs
depending on the specification used.

3.3 Differences in distributions

Our last test consists in plotting the kernel density estimate of each of the WTP (or
VTT) distributions derived from the shifted MMNL model with CT specific random
heterogeneity. Kernel density estimation (KDE) is simply a non-parametric technique
for estimating the probability density function of a random variable. We then use the
k-density test for comparing the common area of KDE proposed by Mart́ınez-Camblor
et al. (2008). This test allows to assess how similar or different two distributions are.
More precisely, the k-density test gives a simple measure of the proximity of two kernel
density estimates. This measure, known as the AC statistic, varies between 0 and 1. A
value of 0 corresponds to an absolute discordance while a value of 1 corresponds to an
absolute match of the distributions. For each dataset, we test whether and by how much
the AC statistic differs between the first CT and the subsequent ones for the shifted
MMNL model with CT specific random heterogeneity.

4 Results

We use four SP surveys datasets from different countries (Australia, Denmark and
Poland). The SP surveys vary in terms of design (number of attributes, number of
choice scenarios, and number of alternatives). Overall, we use two datasets from trans-
port surveys and two datasets from non-market valuation surveys. By including data
from such a diverse set of surveys, we can establish whether differences exist across areas.
For each survey, the order of the CTs was randomised across individual participants. In
what follows, we only describe results for one of the datasets.

The case study reported in this extended abstract makes use of data from a three
alternative route choice experiment in Australia (one alternative consisted of a reference
trip and was kept fixed across choice tasks). The alternatives were described in term
of free flow time (ff), slowed down time (sdt), running costs (cost), tolls (toll) and
travel time variability (var). More details can be found in Hensher and Rose (2005).
Model results are compared in Table 2 and details outputs are reported in Table 3.
The distribution of V TT ff , V TT sdt and V TT var is positive log-normal while the
distribution of cost and toll is negative log-normal. Models are estimated in cost space.
Interestingly, we find that Model B is not an improvement over the basic MNL model
(Model A) and that none of the shifts in the means introduced in Model B are significant,
while Model D and Model E are both substantially improving the goodness-of-fit with
respect to Model C. Model E outperforms Model D. We note that the only shift in the
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mean of the random parameters which has been found to be significant is for the toll
attribute. As a result, all the other shifts have been fixed to zero for Model D and Model
E. We find that σ3 V TT sdt, σ3 V TT var and σ3 V TT toll are significant and that the
standard deviations for the first CT (σ1) are very different than the standard deviations
for the subsequent CT (σ2) for some of the parameters.

Table 2: Sydney survey - Likelihood ratio test results

LR test value Degrees of freedom p-value

Model B vs Model A 6.12 5 0.295

Model D vs Model C 12.33 1 0.000

Model E vs Model D 37.13 9 0.000

Model E vs Model D 24.8 8 0.001

The analysis of the welfare estimates (see Table 4) reveals that the first CT yields
much lower VTT than the subsequent ones for Model E, and that these values are also
much lower than those derived from Model C and D. The mean VTT values are not
all found to be significantly different across models and CT according to the T-tests
reported in Table 5, where significant different are reported in bold. We find significant
differences between the first choice tasks and the subsequent ones for model E, where
V TT ff and V TT var are found to be significantly lower for the first choice task, which
challenges the idea that preferences are stable across CTs. Finally, we look at Figure 1
and Table 6 and find that the distribution of VTT are very different between the first CT
for Model E and the other distributions considered. Indeed, the common area between
the distribution of V TT ff for Model E (CT1) and Model E (CT > 1) is only 62%
while it is 82% between Model C and Model E (CT > 1). Similar results are observed
for V TT sdt and V TT var2.

2Results for Model D are not reported because the distributions have been found to be very similar
to Model C and potentially not informative given that the only difference between the models is the
introduction of µ toll in Model D.
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Table 3: Sydney survey - Model results (in WTP space)

Model A Model B Model C Model D Model E

LL(final) -3027.662 -3024.601 -2428.145 -2421.981 -2409.58
Adj.Rho-square 0.2895 0.2891 0.4287 0.433 0.431
AIC 6069.32 6073.2 4880.29 4869.96 4861.16
BIC 6113.18 6148.39 4955.48 4951.41 4992.74

Est. R. T Est. R. T Est. R. T Est. R. T Est. R. T

µ1

asc1 -0.1979 -1.37 -0.1987 -1.35 -1.4025 -6.13 -1.3976 -5.02 -1.4125 -6.22
asc2 -0.2744 -1.85 -0.2779 -1.84 -1.4860 -6.61 -1.4921 -5.28 -1.4982 -6.72
V TT ff 13.1598 12.30 11.3721 3.28 2.1667 12.06 2.2026 8.77 2.2366 15.18
V TT sdt 17.3959 20.23 12.5915 4.55 2.6247 23.58 2.6399 18.19 2.5965 28.02
V TT var 1.1085 1.08 1.7449 1.43 1.5134 5.21 1.5269 1.98 1.4783 5.48
cost -0.3135 -17.15 -0.3806 -4.23 -0.6526 -7.41 -0.6523 -7.16 -0.6355 -7.34
toll -0.3614 -13.87 -0.2920 -5.50 -0.6532 -7.52 -1.1145 -5.65 -1.3262 -2.44

σ1

V TT ff . . . . 1.1031 11.76 1.0002 14.03 0.3295 0.69
V TT sdt . . . . 0.6877 5.50 0.6763 2.02 0.4345 2.61
V TT var . . . . 1.2879 10.83 1.3032 10.60 1.0547 3.57
cost . . . . -0.5990 -6.99 -0.6226 -1.18 -0.6690 -4.98
toll . . . . -0.8452 -9.07 -0.8645 -6.56 -1.2033 -1.00

µ2

V TT ff . . 2.0240 0.53 . . 0.0000 NA 0.0000 NA
V TT sdt . . 5.3077 1.74 . . 0.0000 NA 0.0000 NA
V TT var . . -0.6606 -0.67 . . 0.0000 NA 0.0000 NA
cost . . 0.0731 0.80 . . 0.0000 NA 0.0000 NA
toll . . -0.0750 -1.47 . . 0.4984 3.08 0.7416 1.3700

σ2

V TT ff . . . . . . . . 1.0617 17.52
V TT sdt . . . . . . . . 0.5457 10.55
V TT var . . . . . . . . 1.4128 7.16
cost . . . . . . . . -0.6067 -11.91
toll . . . . . . . . -0.7774 -9.44

σ3

V TT ff . . . . . . . . 0.0000 NA
V TT sdt . . . . . . . . 0.4968 10.09
V TT var . . . . . . . . 0.4177 4.63
cost . . . . . . . . 0.0000 NA
toll . . . . . . . . -0.4256 -6.85
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Table 4: Sydney survey - Welfare estimates (In AUS per hours)

Model Attribute
ALL CT1 CT > 1

Mean Median SD Mean Median SD Mean Median SD

Model A
V TT ff 13.16 . . . . . . . .
V TT sdt 17.40 . . . . . . . .
V TT var 1.11 . . . . . . . .

Model B
V TT ff 13.38 . . 13.16 . . 13.40 . .
V TT sdt 17.86 . . 17.40 . . 17.90 . .
V TT var 1.09 . . 1.11 . . 1.08 . .

Model C

V TT ff 16.11 8.77 24.53 . . . .
V TT sdt 17.49 13.79 13.61 . . . .
V TT var 10.58 4.56 22.12 . . . .

Model D

V TT ff 14.98 9.09 19.53 . . . .
V TT sdt 17.62 14.00 13.42 . . . .
V TT var 10.94 4.62 23.44 . . . .

Model E

V TT ff 16.10 9.40 22.35 9.89 9.38 3.35 16.51 9.41 23.64
V TT sdt 17.47 13.44 14.42 14.75 13.41 6.71 17.65 13.41 15.07
V TT var 12.83 4.40 33.92 7.73 4.40 11.23 13.17 4.38 35.52

Table 5: Sydney toll road survey - VTT comparisons across models using T-tests

C D E − CT = 1 E − CT > 1 Model

V TT ff

-1.30 -0.51 1.66 -1.57 A
. 0.295 2.411 -0.154 C
. . 1.377 -0.410 D
. . . -2.689 E − CT = 1

V TT sdt

-0.04 -0.08 1.35 -0.13 A
. -0.041 1.105 -0.059 C
. . 0.901 -0.001 D
. . . -1.260 E − CT = 1

V TT var

-4.28 -1.33 -3.31 -4.87 A
. -0.048 1.081 -0.878 C
. . 0.423 -0.296 D
. . . -1.916 E − CT = 1

Table 6: Sydney survey - Common area of kernel density estimates

Model E - CT1 Model E - CT > 1

VTT ff

1 . Model E - CT1
0.62 1 Model E - CT > 1
0.64 0.82 Model C

VTT sdt

1 . Model E - CT1
0.57 1 Model E - CT > 1
0.58 0.9 Model C

VTT var

1 . Model E - CT1
0.69 1 Model E - CT > 1
0.66 0.8 Model C
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Figure 1: Sydney survey - VTT distributions - MMNL + rand. shifts model

5 Discussion and conclusions

This research is an attempt to provide a reliable although limited answer to the ongoing
debate on whether the preferences expressed by respondents in a repeated SC survey
format, which is by far the most widely used format in a large stream of fields including
transport, environment and marketing, are stable across CT. We have noted that most of
the surveys who have investigated preference stability have used MNL models with fixed
coefficients and CT specific shifts, or CT specific MNL models (which are rigorously the
same) (Czajkowski et al., 2014; Hess et al., 2012).

Overall, our results clearly indicate that preferences are not stable between the first
choice tasks and the subsequent ones and that simple MNL models might not be nec-
essarily able to reveal such results. As previously mentioned, the final paper features
results from four different dataset and is ready for presentation.
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