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ABSTRACT 

Reporting and hypothetical biases are inherent to canonical methods of transportation data 

collection and had implied that analysis in this field has often neglected aspects that are 

strong behavioral drivers, such as uncertainty, physical effort or stress. Granular 

information on these aspects would allow measuring their valuation and/or addressing a 
pervasive source of endogeneity. Recent advances in miniaturization and data processing, 

as well as evidence that indicators from biosensors correlate with psychophysiological 
states and emotions, suggest that there is an opportunity to close this gap by collecting a 

new type of data from transportation users. This research works on leveraging this 
opportunity by putting forward, illustrating and testing a methodological framework to 

incorporate psychophysiological indicators gathered from biosensors into transportation 
choice behavioral modeling. The proposed framework adapts the integrated choice and 

latent variable approach by incorporating the psychophysiological responses as additional 
indicators of a latent psychophysiological state that enters the utility. For the practical 

implementation of the proposed framework we also consider a specific form of aggregation 
of the indicators across time to avoid the curse of dimensionality arising from the 

unmanageably large number of folds for integration. The proposed framework is illustrated 
and validated using Monte Carlo simulations. Besides, a prototype field experiment was 

designed and performed to confirm the validity of three crucial components of the proposed 
framework: i) the relation between transportation markers and emotions; ii) the possibility 

of measuring those emotions trough biosensors installed on travelers, iii) and the validity of 

the proposed aggregation needed for practicality. In the experiment, a public transport user 

travelled wearing a bracelet with a Printed Circuit Board that integrated tiny biosensors to 

capture electrodermal activity, heart rate variation, temperature and acceleration. Results 
confirm the hypotheses, enabling future massive data collection efforts to take full 

advantage of the proposed framework. 
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1. Introduction 

 

Reporting and hypothetical biases are inherent to canonical methods of transportation data 

collection and had implied that analysis in this field has often neglected aspects that are 

strong behavioral drivers, such as uncertainty, physical effort or stress. Granular 

information on these aspects would allow measuring their valuation and/or addressing a 

pervasive source of endogeneity (Guevara, 2015). Recent advances in miniaturization and 

data processing, as well as evidence that indicators from biosensors correlate with 

psychophysiological states and emotions, suggest that there is an opportunity to close this 

gap by collecting a new type of data from transportation users. 

This research works on leveraging this opportunity by putting forward, illustrating and 

testing a methodological framework to incorporate psychophysiological indicators gathered 

from biosensors into transportation choice behavioral modeling. The proposed framework 

adapts the integrated choice and latent variable (ICLV) (Walker, 2001) approach by 

incorporating the psychophysiological responses as additional indicators of a latent 

psychophysiological state that enters the utility. 
 

2. Theoretical Framework 
 

The proposed theoretical framework to incorporate psychophysiological indicators is 
summarized in Figure 1. Figure 1a shows the classical Random Utility Maximization 

(RUM) model in which individual n chooses alternative i considering a mix of attributes 
and characteristics, synthetized by the vector Xin, plus some exogenous disturbances εin that 

conform the indirect utilities Uin, which are latent to the researcher. Besides, the indirect 
utility is divided into a systematic part Vin that depends on the observed variables Xin and 

the random part, formed by the disturbances εin. Then, assuming rationality, it is considered 
that the individual chooses the alternative with the largest utility among those in the choice-

set Cn, election that is observed by the researcher through the indicator yin, which takes 
value 1 if alternative i is chosen by individual n and zero otherwise. 

Consider now that, using biosensors, it is possible to collect psychophysiological 
indicators that are directly related to psychophysiological states and emotions (PPSE) and 

perceived by the transport user. Having this type of data, the choice framework can be 

enriched as shown in Figure 1b, where Gint corresponds to a vector of granular events ginst 

experienced by individual n at time t on alternative i, and PPint corresponds to the 

respective vector of psychophysiological indicators. PPint is assumed to be observed by the 

researcher, but Gint may or may not be fully observed and it is thus represented by a 

rectangle with dashed borders. 

Consider first relations (ia) and (ib) in Figure 1b. These links represent the fact that 

psychophysiological states and emotions PPSE λint, perceived by an individual n while 

traveling on alternative i at time t, depend both on the vector Gint granular events ginst 

occurring at time t and the attributes and characteristics Xin. All the disturbances in Figure 

1b are assumed to be exogenous and are not the same of Figure 1a. 

Besides, relation (ic) corresponds to a measurement of λint through the 
psychophysiological indicators PPint. Relations (ia), (ib) and (ic) can be synthetized as 

shown in Eq.(1), where 
int
δ  represents, e.g., a measurement error of the 

psychophysiological indicator, which is assumed to be exogenous. 
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Fig. 1a: Canonical framework 

 
Fig. 1b: Framework for incorporating psychophysiological indicators 

Figure 1. Discrete Choice Modeling Framework 

 

( ) ( ),int int int in int in int int intPP G X Gλ δ α λ δ= + = + +ɶ    (1) 

Note that, despite PPint depends both on Gint and Xin, since the latter does not depend 

on time, it can be argued that only Gint will truly remain as an independent variable in Eq. 

(1), while the effect of Xin is being reduced to a constant
in

α that depends on the individual 

and the alternative, as shown at the right of Eq. (1). Furthermore, since psychophysiological 

indicators are often analyzed after subtracting their mean over time to account for a 

baseline (Burt and Obradović, 2013), even the effect of the constant may vanish from Eq. 

(1). This effect will potentially wipe out the impact of relations (ib) shown in Figure 1b, or 

at least reducing them to a constant by alternative i, 
i

α . 

Consider now relations (iia) and (iib) in Figure 1b. Without loss of generality, it can be 

considered that effect of the granular and budgetary attributes in the indirect utility Uin can 

be respectively separated in the systematic utility inV  into two terms, as shown in Eq. (2). 

( ) ( ){ },G B

in in in in in in in
U V V G V X ε= +     (2) 

B

inV  corresponds to the traditional systematic part of the utility, which is often 

considered to be linear in the budgetary attributes Xin, capturing relation (iib) in Figure 1b. 

In turn, G

inV corresponds to some function of the granular events Gint, transformed through 

the psychophysiological states and emotions PPSE and integrated over t across the whole 
trip, capturing relation (iia) shown in Figure 1b. 

Besides, relation (iic) corresponds to a measurement of Uin through the observed choice 
yin. Assuming rationality, relations (iia), (iib) and (iic) can be synthesized as shown in Eq. 

(3). 

1in in jn ny U U j C = ≥ ∀ ∈       (3) 

Finally, consider relation (iii) in Figure 1b, which represents a correlation between the 

psychophysiological indicators PPint and the utility Uin. Different from relations of types (i) 

and (ii), relation type (iii) is not causal, is not a link that comes from the behavior of the 

individual, but is a mere correlation implied by the way in which the data is generated. To 

remark its incidental nature, relation (iii) is depicted with dashed arrow in Figure 1b. 
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Despite PPint may in principle correlate with the whole utility Uin, since budgetary 

attributes Xin can be assumed to remain unchanged during the trip, PPint would only be 

accounting for the granular attributes or events Gint. Under this setting, any mean effect 

ignored by such a treatment of the psychophysiological indicators would be captured by a 

unique additive alternative specific constant of the systematic utility, shared with 
B

inV . In 

general, this constant would then have to be heterogeneous in the sample, but that may not 

be needed if the baseline is subtracted from PPint. Furthermore, under this setting, the 

vector of psychophysiological indicators PPin, somehow integrated over t, can be a function 

of 
G

inV , as shown at the left bottom of Figure 1b, and in in Eq. (4), where 
in
ξ  is an 

exogenous error term. 

( )( )G

in in in inPP f V G ξ≈ +      (4) 

 

For the practical implementation of the proposed framework we also consider a 

specific form of aggregation of the indicators across time to avoid the curse of 

dimensionality arising from the unmanageably large number of folds for integration.  

 

3. Monte Carlo Simulation Analysis 

 

The proposed framework was also illustrated and validated using Monte Carlo simulations. 

The exercises undertaken in this section have two objectives. First, by generating simulated 

data sets with known underlying model parameters, examine the ability of the proposed 

aggregated function of the psychophysiological indicators to recover parameters from finite 

samples in a model. Second, to quantify the effect of omitting granular events from the 

utility function when these events are correlated with the observed attributes and are 

perceived by individuals and condition their choices. The latter objective also considers the 

analysis of the feasibility of correcting such an effect with the proposed method. 

The results are summarized in Figure 2. The figure is divided in two sections: the left 

one provides the results for the uncorrelated datasets, where the granular events are 

generated independently from the explanatory variables, while the right section presents the 

results for endogenous variables. Additionally, Figure 2 shows the results both for the 

proposed model (“EV model”) and an ordinary MNL that does not account for the granular 

events perceived by the individuals (“MNL model”). For each model, the table displays the 

true ratio of the coefficients (dashed horizontal line), and a box plot of the estimated 

coefficients obtained from 100 repetitions. Results show that in the uncorrelated data case, 

both the EV model and the MNL model correctly estimate the parameter´s quotient, while 

in the correlated data case the MNL model provides a large bias. 
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Figure 2: Boxplot of Ratio 

1 2
/β β  for Simulated Data (N=5000). 

 

 

4. Prototype Experiment 

 

Besides, a prototype field experiment was designed and performed to confirm the validity 

of three crucial components of the proposed framework: i) the relation between 

transportation markers and emotions; ii) the possibility of measuring those emotions trough 

biosensors installed on travelers, iii) and the validity of the proposed aggregation needed 

for practicality. In the experiment, a public transport user travelled wearing a bracelet with 

a Printed Circuit Board that integrated tiny biosensors to capture electrodermal activity, 

heart rate variation, temperature and acceleration.  

To elicit the participant's emotions during the journey (Eint in Figure 1), in our 

experiment a simplified version of the circumplex model was used. The circumplex model 

of affect, proposed by Russell (1980), is one of various models for the measurement of 

emotions have been developed, and it states that emotions are generated primarily as a 

combination of two dimensions: valence and arousal. As shown in Figure 3a, the vertical 
axis corresponds to the state of arousal where a high arousal is associated with activation 

and a low one to deactivation. In the same way, on the horizontal axis a positive valence is 
associated with pleasant states and the contrary with a negative one (Posner et al., 2005). 

For example, emotions of happiness and excitement are found in the quadrant with positive 
valence and high arousal, euphoria being a greater value of arousal. On the other hand, in 

the quadrant of negative valence and high arousal are emotions such as stress or 
nervousness. In the quadrant of negative valence and low arousal are the emotions of 

sadness and boredom, negative and more passive emotions. Finally, in the positive valence 
and low arousal quadrant we find emotions such as calm and serene.  

The simplified circumplex model was applied through an ad-hoc mobile app, which 
captures the self-reported participant’s emotions in random timestamps, as shown in Figure 

3b, depicting a selection of only three emotions by quadrant. On average, emotions were 
measured every 5.1 minutes. 
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Fig. 3a: Original Circumplex Model. (Posner Et 

Al., 2005). 

 
Fig. 3b: Mobile Application with Simplified 

Circumplex Model 
Figure 3: Graphical Representation of the Circumplex Model 

 

For data acquisition (PPint in Figure 1), the following signals were used: EDA, 

photoplethysmography (PPG), and ST. To measure the EDA and HR signals, the Shimmer 

GSR+ unit sensor was used with a sampling frequency of 120 Hz. The position of the 

electrodes for measuring the EDA was the palm area of the proximal phalanx of the index 

and ring fingers of the left hand (Villarejo et al., 2012). The optical sensor that functions as 

a photoplethysmograph was attached to the lobe of the right ear (Ye et al., 2017). The 

Shimmer Bridge Amplifier + unit sensor with a sampling frequency of 50 Hz was used to 

measure ST. The sensor was applied under the right armpit. This sensor was synchronized 

with the EDA and pulse sensors using a base provided by Shimmer together with the 

Consensys software. 

The experimental procedure consisted of various stages. As soon the participant arrived 

in the experimental room, the experiment was explained to him, and he was asked to read 

and sign the informed consent, as well as a questionnaire to obtain his basic anonymous 

information. The participant was seated in front of a screen, and the sensors were connected 

in the following order: ST, EDA, and PPG. 

Prior to the experiment in the outdoor environment, the user underwent a relaxation 

session consisting of the visualization of three four-minute videos of landscapes with 

background instrumental music. Then, the participant was asked to take deep breaths for 

one minute with his eyes closed and with soft background instrumental music. This 

procedure aimed to eliminate the Hawthorne effect—modification in the behavior of the 

subjects due to their awareness of being studied—and physiological effects similar to the 

“white coat” effect in measured signals (Parsons, 1974).  

The chosen trip route includes a segment by bus and another by metro, both supervised 

by the experimenter. As soon as the baseline condition signals were captured, the 

participant walks two hundred meters towards the bus stop, where he waits for 5 minutes. 

The participant rides a bus route with 13 bus stops. Then the passenger transfers to the 

nearest metro station, a walk that takes about 6 minutes. This stage includes a wait for the 

metro, and a trip through four stations, at which point the participant undertakes the same 

trip in the opposite direction. To measure different conditions, the participant is instructed 
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to travel both seated and standing on both modes. During the journey, the participant 

received automatic, random notifications in the mobile application to record his emotional 

state, choosing one among five options. Each notification was randomly generated within 1 

to 10 minutes from the previous notification. In addition, the experimenter recorded notable 

events that happened during the trip, such as the appearance of vendors or public transport 

inspectors, among others.  

Finally, the experimenter recorded the timestamps (Gint in Figure 1) of the 

participant's actions, such as getting on or off the bus, sitting or standing on the seat and, 

walking to the bus stop or metro station. The entire experiment lasts almost 2 hours. 

The sample characteristics are presented in Table 2. A short name was defined for the 

categorical variables presented at the top of the table. It should be noted that the samples 

share do not vary across the 5 and 10-seconds windows dataset, as they are constructed 

from the same original data. Regarding the Circumplex emotions, stressed, sad and relaxed 

have basically the same sample share, while neutral and happy are more uncommon 

emotions during the trip. The trip stages were grouped in four unique stages: walking to the 

bus stop / metro station, waiting for the bus/metro, riding the bus and at the metro (riding 

the metro or walking within the underground station). The statistics on the table show that 

in most pseudo-choice occasions, the individual is riding the bus. The main difference 

among datasets is the standardized EDA, which is higher for the 10-seconds window (EDA 

was measured, on average, every 0.12 seconds). Figure 4 summarizes the estimation 

sample. 

Table 2. Sample Characteristics 

Variable 
Variable 

name 

5-seconds window 10-seconds window 

Observations Share Observations Share 

Circumplex Emotions           
  Neutral Neutral 184 13.4% 92 13.4% 

  Alert, excited, elated, happy Happy 86 6.2% 43 6.2% 

  Tense, nervous, stressed, upset Stressed 382 27.7% 190 27.6% 

  Sad, depressed, bored Sad 387 28.1% 194 28.2% 
  Contented, serene, relaxed, calm Relaxed 339 24.6% 170 24.7% 

Trip Stages           

  Walking to the bus stop / metro station Walk 294 21.3% 148 21.5% 

  Waiting for the bus/metro Wait 242 17.6% 121 17.6% 
  Riding the bus Bus 633 45.9% 316 45.9% 

  At the metro Metro 209 15.2% 104 15.1% 

Descriptive statistics 

Variable Statistic 5-seconds window 10-seconds window 

Standarized Electrodermal Activity 

(EDA)  

Mean   3.69 
 

4.39 

Std. Dev.   1.00 
 

1.00 

Minimum   0.49 
 

1.19 

Maximum   5.58   6.19 
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Figure 4. Relationship between Emotions, EDA and Trip Stages over Time. 

 

The modeling hypothesis in this case is that analyzing psychophysiological indicators 
can lead to understand traveler’s emotions; that is, relationship (ic) in Figure 1b. It should 

be noted that even if this relationship exists, emotions could be associated with events 
unrelated to the trip (such as an annoying phone call or a pleasant conversation), though 

relationship (ia) in Figure 1b . Then, the results are limited in linking trip characteristics 
with emotions. 

To classify the emotional states during the journey based on the psychophysiological 
signals, a random forest model was used. The characteristics extracted for its execution 

correspond to the mean and the standard deviation of EDA, EDA phasic component, PPG, 
HR and ST.  

To evaluate the model’s fit, we conducted a cross validation exercise using the K-fold 
method, where the original sample is randomly partitioned into k equal sized subsamples. 

For each k, the model is estimated using 1k −  subsamples; the last subsample is used for 

out-of-sample validation.  
 

Table 4. Performance Measurements for Out-Of-Sample Validation 
Sample Model Precision Recall F1 Score 

5-seconds 
window 

Random forest 77.4% 74.2% 75.5% 

Only constant 26.2% 20.0% 40.2% 

EV model 51.5% 50.1% 60.5% 

10-seconds 
window 

Random forest 71.8% 61.7% 64.1% 

Only constant 25.4% 19.9% 39.8% 

EV model 53.7% 50.0% 59.9% 

 

Table 4 presents three performance measurements (precision, recall and the F1 score) 

for the K-fold method, with 10k = . The performance measurements of the proposed 
approach are compared to those of the random forest model. It should be noted that, given 
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the nature of the random forest model, the performance measurements obtained for that 

model are the highest possible measurements attainable. For the proposed model, the results 

is Table 4 show a lower fit than the random forest model, but the fit is considered relatively 

high, validating the proposed approach. 

 

5. Conclusion 

 

The planning, evaluation and management of transport services have been based almost 

exclusively on measures of travel time and cost, ignoring various relevant aspects because 

they are hard to measure with traditional methods of transport data collection. These data 

collection tools are also limited by a reporting and hypothetical bias. This research works 

toward closing this gap using indicators gathered from psycho-physiological sensors, given 

that empirical evidence has shown that they covariate among each other, and correlate with 

psycho-physiological states such as stress, cognitive load, various emotions, fatigue, among 

others.  

With that goal in mind, this article conveys the development of a framework for 

modeling the modal utility by incorporating psychophysiological data extending the 

conceptual framework for modeling integrated choices, including the psychophysiological 

responses as additional indicators.  

The proposed approach was assessed, enhanced and validated using first Monte Carlo. 

Results show that the proposed methodological framework is feasible for the incorporation 

of psychophysiological indicators to the modeling of transportation choices, potentially 

enriching the understanding of the phenomena and the forecasting capabilities. 

A prototype field experiment was designed that makes use of a Printed Circuit Board 

that integrates tiny psycho-physiological sensors to capture electrodermal activity, heart 

rate, heart rate variation, temperature and acceleration. Although the purpose of this 

experiment is limited and the results cannot be generalized, it opens new possibilities in 

terms of data collection and modeling, as it serves to validate some critical components of 

the proposed framework. Future research can build upon the prototype experiment 

increasing sample size and/or studying other discrete outcomes, such as modal choice or 

route choice. 
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