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Abstract 

Recursive Logit gives not only possibilities to develop new route choice models for calibration or evaluation. The 

model can also be used in traffic assignment. Using the formulations as mentioned in (Fosgerau et al, 2013) to 

calculate the downstream utilities, however, is not efficient. First, taking the inverse of a large matrix is slow. And 

second, it is not able to be warm started. This paper will show how much faster an iterative procedure that can be 

warm started is. Another contribution of this paper is the overcoming of numeric problems that occur when working 

on a large network or with a small variance parameter. 

1. Introduction 

1.1 Problem with Route Sets 

A route choice model predicts which routes people take to their destination. The model computes 

probabilities over a subset of all possible routes of a network that the traveller is likely to consider. 

In equilibrium traffic assignment models, two ways exist to handle the route set during 

equilibration. Either, the route set is determined before the first iteration and remains fixed 

throughout iterations. Or, alternatively, the route set changes flexibly during equilibration 

depending on the congestion levels. Both flexible and fixed route sets have their advantages and 

disadvantages. A flexible route set complicates convergence to equilibrium, as not only the route 

choice probabilities, but also the route set need to converge. A fixed route set does not have this 

problem. However, it is difficult to define a priori (i.e. before congestion levels at equilibrium are 

known) which fixed subset of routes is attractive to the traveller and whether all relevant route 

alternatives are included. 

A fixed full route set containing all existing route alternatives avoids both problems. For example, 

Recursive Logit (Bell, 1995; Fosgerau, Frejinger and Karlstrom, 2013) considers an implicit full 

route set for the estimation of route choice models. (Verstraete, Himpe and Tampère, 2017) 

integrated Recursive Logit as a route choice model in a static or dynamic traffic assignment. The 

model calculates for each turn the probability of being chosen while traveling towards a 

destination.  

1.2 Assignment with Full Route Set 

In (Verstraete, Himpe and Tampère, 2018), we showed how the Recursive Logit can be adapted 

to be used in a Dynamic Traffic Assignment. There are two main parts in this model. With the link 

costs as an input, the first part is to calculate the downstream utilities of each link (at each time). 

Once these are known, the second part is to calculate the turn probabilities of each link (at each 

time). 



This model has some downsides concerning numerical errors, scalability and efficiency. Using the 

formulations as mentioned in (Fosgerau, Frejinger and Karlstrom, 2013) for calculating the 

downstream utilities is not efficient. First, it involves inversion of a large matrix, which is slow 

(for formulas, see below). And second, it is not able to be warm started. Warm starting the method, 

which means it is initialized the state with a previous result, has two advantages. First, during the 

iterations of an assignment, each iteration can be warm started with the result of the latest iteration. 

This makes especially the last iterations much cheaper as the solution point is close to the previous 

one. Second, when a traffic assignment is used in practice, multiple similar variants (e.g. 

infrastructure, demand, or control scenarios) of a network are evaluated. It is logical to expect the 

final solution point of a variant to be not far from the base equilibrium point. If each variant is 

initialized with the base equilibrium point, fewer iterations will be needed.  

This paper will show how much faster an iterative procedure is when it is warm-started. Another 

contribution of this paper is the overcoming of numeric problems that occur when working on a 

large network or with a small variance parameter. 

Section 2 will give an overview of the normal formulations, while section 3 gives the 

modifications. Section 4 will compare the performance of the different methods. Section 5 gives 

an insight into further work and Section 6 gives some conclusion. 

2. Formulas 

2.1 Recursive Logit 

The expected downstream utility at the end of a link is calculated recursively in the same way as 

in Dial’s algorithm (Dial and Voorhees, 1971), namely: 

𝑉𝑘
𝑑 = 𝐸[ max

𝑎∈𝐴𝑘

(𝑣𝑘𝑎 + µ𝜀 + 𝑉𝑎
𝑑) ] (1) 

With 𝑣𝑘𝑎 the utility for going from link k to a; ε a random utility component; µ a scale parameter; 

𝑉𝑎
𝑑 the expected downstream utility at link a, and 𝐴𝑘 the set of links that are accessible from link 

k. The Expected Maximum Perceived Utility function in a logit model can be analytically solved 

as a logsum. Equation 1 then becomes: 

𝑉𝑘
𝑑 = µ ln ∑ exp(

1

µ
𝑎∈𝐴𝑘

(𝑣𝑘𝑎 + 𝑉𝑎
𝑑))  

(2) 

To write the system of equations in matrix notation, three matrices are introduced: 𝒃 (|𝐴|  × 1), 

𝒛 (|𝐴|  × 1) and 𝑴 (|𝐴|  × |𝐴|). With 𝒃 being a vector with 𝒃𝑘 = 0 for 𝑘 ≠ 𝑑 and 𝒃𝑑 = 1, 𝒛 a 

vector that gives the destination-dependent transformed utility of the end node of a link: 𝒛𝑘 =

exp (
1

𝜇
𝑉𝑛

𝑑(𝑎)). 𝑴 is a matrix of transformed utilities for each turn. 𝑴𝑘𝑎 = exp (
1

𝜇
𝑣𝑘𝑎) Then, 

equation 2 becomes: 

𝒛 = 𝑴 ∙ 𝒛 + 𝒃  (3) 

This is solved by: 



(𝑰 − 𝑴) 𝒛 = 𝒃  (4) 

With 𝑰 the identity matrix. This equation shows that in principle, 𝒛 can be directly solved by 

inversion of the matrix (𝑰 − 𝑴). Alternatively, the system of equations can easily be rewritten and 

solved in the iterative form: 

𝒛𝑖 = 𝑴 ∙ 𝒛𝑖−1 + 𝒃  (5) 

2.2 Probability Calculation 

Calculating the probability once the downstream utilities are known is straightforward: 

𝑷𝑘𝑎 =
𝑒

1
µ

(𝑣𝑘𝑎+𝑉(𝑎))

∑ 𝑒
1
µ

(𝑣𝑘𝑖+𝑉(𝑖))
  

(6) 

Or according to (Fosgerau, Frejinger and Karlstrom, 2013) in the transformed form as: 

𝑷𝑘 =
𝑴𝑘 ∘ 𝒛𝑇

𝑴𝑘𝒛
  

(7) 

With 𝑴𝑘 row k of matrix M. 

3. Modifications 

In this section, the modifications made are discussed. It will be shown that for large networks, the 

theoretical solution of the previous section is inefficient and can become numerically unstable. 

The main contribution of this paper is selecting the right set of modifications that resolve these 

issues such that the overall problem can be used efficiently in larger networks. 

3.1 Downstream Utilities: Warm starting and flag mechanism 

To start the procedure of Recursive Logit in the iterative form, there should be an initial 𝒛0. This 

can come from a previously calculated scenario, hence enabling warm start. 

The iterative structure of the problem also allows smarter updating schemes. Equation 5 still shows 

z as a vector that is updated as a whole in every iteration. When one part of the network is close to 

equilibrium, but another part is still far off, it makes no sense to repeat already converged 

calculations for the first part. A flag mechanism is proposed to only update the links where one of 

their dependencies have significantly changed. This means when the problem is warm-started, also 

a vector indicating which parts of the network have been changed is given as an input. From there 

on, only significant changes to the values will propagate through the network until convergence. 

The idea of a flag mechanism is simple, but the outcome is very important as small scenario 

changes can be calculated fast (Himpe, Corthout and Tampère, 2016). Equation 5 then becomes: 

𝒛(𝑓𝑙𝑎𝑔)𝑖 =  𝑴𝑓𝑙𝑎𝑔 ∙ 𝒛𝑖−1 + 𝒃  (8) 

With 𝒛(𝑓𝑙𝑎𝑔)𝑖 only the 𝒛 values that are flagged and 𝑴𝑓𝑙𝑎𝑔 the corresponding rows of matrix M for 

the flagged links.  



When there are no initial values for 𝒛0, which means the algorithm is ‘cold’-started, we found that 

the method performance best when it was initialized with every downstream utility as negative 

infinity except from the destination, which gets a downstream utility of zero. (Resulting in 

respectively 𝒛 values of 0 and 1.) This results in a ‘wave’ of flag activations going over the 

network, starting from the destination. The overhead of the flag mechanism is in this case larger 

than the benefit as each link will be flagged at least once and possibly multiple times. There may 

exists better initializations. 

3.2 Numerical errors 

In both subparts, downstream utility and probability calculation, there is a problem with the current 

formulations in section 2 regarding to numerical errors. It depends on how small a number can be 

represented in the software. E.g. in Matlab 2019 on a normal computer, the smallest positive 

number one can represent is 10−324. Representing this number as an exponential becomes: 𝑒−745. 

Calculating the exponential of any number smaller than -745 becomes zero. This is a problem in 

the calculations as the matrix M or vector 𝒛 can no longer be constructed or the probabilities 

(equation 7) can no longer be calculated. 

Even if matrix M and vector 𝒛 are calculable, the result of equation 4 can still be so small it cannot 

store the correct value and rounds it to a zero. A 𝒛 value of zero represents an infinite cost to reach 

the destination. 

Instead of making matrix vector multiplications and summations of the transformed utilities, the 

formulas can be adjusted to work directly with the utilities. There are two operations that need to 

be adjusted. Note that for the result of an operation, we are only interested in the exponent value. 

3.2.1 Exponential product 

𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑒𝑎 ∗ 𝑒𝑏  (9) 

This is straightforward as: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑎 + 𝑏  (10) 

The same holds for division: 

𝑒𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 =
𝑒𝑎

𝑒𝑏
  

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 = 𝑎 − 𝑏 

(11) 

 

3.2.2 Exponential sum 

𝑒𝑠𝑢𝑚 = 𝑒𝑎 + 𝑒𝑏  (12) 

To rewrite this, an intermediate step is needed. Note that in our model 𝑎 and 𝑏 represent utilities 

which are always negative (or zero for the destination). 

𝑚𝑎𝑥 = max (𝑎, 𝑏)  (13) 



𝑠𝑢𝑚 = 𝑚𝑎𝑥 + log (𝑒𝑎−𝑚𝑎𝑥 + 𝑒𝑏−𝑚𝑎𝑥)  (14) 

By isolating the maximum exponent, the formula is always calculable. If 𝑒𝑎−𝑚𝑎𝑥 is not calculable, 

it means that the difference between the exponents is so big, it has no influence on the sum of the 

exponentials. Note that the log of the sum of the difference in utilities (second term in equation 

14) is very small. One could even argue to only compute 𝑒𝑎−𝑚𝑎𝑥 if the result has influence on the 

significant numbers of the result (|𝑎 − max | < 33), but checking this appeared to require more 

time than calculating it. 

3.2.3 Probability 

As equation 6 only consists of sums and one division, it can be reformulated such that it can be 

calculated. But there is a catch. When the normal formulations do not work anymore, it means that 

we have large exponents. When doing the division, there will be a subtraction between two large 

numbers where one is the maximum utility with a small addition (the log of the sum of the 

difference in utilities) and the other is potentially the maximum utility. This is very unstable for 

numerical errors. Therefore, the formulations to calculate the probability have a twist. Instead of 

doing the operations separately in sequence, one can make a new operation:  

𝑃𝑎 =
𝑒𝑎

𝑒𝑎 + 𝑒𝑏
  

(15) 

𝑚𝑎𝑥 = max(𝑎, 𝑏)  (16) 

𝑃𝑎 = 𝑒𝑎−𝑚𝑎𝑥+log (𝑒𝑎−𝑚𝑎𝑥+𝑒𝑏−𝑚𝑎𝑥)  (17) 

In this way, the small difference in utility due to the log of the sum of the difference of utilities is 

not lost in the calculation. It only becomes irrelevant if 𝑎 ≪ 𝑚𝑎𝑥, but for 𝑎 ≅ 𝑚𝑎𝑥 it is crucial. 

4. Downstream Utility Performance 

There are five different methods described in this paper to calculate the downstream utility.  

1. Normal Recursive Logit (RL) 

2. Iterative Recursive Logit (IRL) 

3. Iterative Recursive Logit with flags (IRLF) 

4. Iterative Scaled Recursive Logit (ISRL) 

5. Iterative Scaled Recursive Logit with flags (ISRLF) 

RL solves the system of equations by taking the inverse of a large matrix. IRL solves it in an 

iterative procedure. ISRL also solves it iteratively but reformulates the formulas such it can be 

calculated with big negative values. IRL and ISRL both update all values in each iteration. IRLF 

and ISRLF use a flag mechanism to only update those values that have a dependency that changed. 

There are four different kinds of scenarios that are of interest. First, one assignment iteration on a 

cold start on an empty network. Second, a full assignment which starts from an empty network, 

but each iteration is initialized with the previous iteration. Third, a full assignment which starts 

from the second scenario. In this scenario the network is slightly changed. Fourth, and last, a full 



assignment where the variation parameter is chosen so small, the exponents become too large to 

be calculated in the normal formulations. 

Note that it does not matter which method is used for the stability or convergence in the assignment 

itself as each method gives the same downstream utilities/probabilities as long as they can be 

calculated. 

The network used in the scenarios is the network of Leuven, visualised in Figure 1. It consists of 

2128 links and 154 origins/destinations. 

 

Figure 1 Network of Leuven 

4.1 Cold Start 

For this scenario, the first iteration of an assignment is calculated starting with an empty network 

and thus free-flow travel times. The downstream utilities are calculated for each destination. 

Table 1 Cold Start Scenario: Computation Times 

Method Total Time 

(seconds) 

One call 

(seconds) 

RL 23.3166 0.1514 

IRL   0.4250 0.0028 

IRLF   5.9213 0.0384 

ISRL 22.7668 0.1478 

ISRLF 16.5628 0.1076 

   

Table 1 shows that the normal iterative methods (IRL,IRLF) perform better than the non-iterative 

method (RL). The fastest method, which is ~50 times faster than RL, is the iterative formulation 

without any scaling or flag mechanism (IRL). As the methods are cold-started, every downstream 

utility of a link needs to be adjusted at least once (in the iterative formulation). This results in the 

overhead of the flag mechanism to be greater than the benefit of only updating a part of the links. 

Because the formulation that allows big exponent is not written in matrix vector multiplications, 

but goes over every link, the flag mechanism makes it slightly faster. Therefore, there is no further 

interest in ISRL as warm-starting the problem will ISRLF make even more faster. 



4.2 Full Assignment Cold start 

For this case, we did a full static assignment on the Leuven network. Link costs are calculated by 

the well-known BPR-function (States, 1964). Due to the stability of the route set and 

characteristics of the Leuven network, a proportional step size of 0.5 is used. (Note that this is not 

generally the case, but the greater stability allows for bigger step sizes and fewer iterations, see 

(Verstraete, Himpe and Tampère, 2017) for more information.) 

As stated above, the different methods will all produce the same downstream utilities resulting in 

the same number of iterations. The convergence of the assignments is visualized in Figure 2. What 

this case study tries to show is the different computation time needed for calculating the 

downstream utilities as some can be warm started and have a flag mechanism. Table 2 shows the 

computation times for each method, excluding computation time for calculating the probabilities 

and resulting link flows as these calculations are the same. Each method is called 3080 (=20*154) 

times during the whole assignment. 

 

Figure 2 Convergence plot 

Table 2 Full Assignment Case: Computation Times 

Method Total  Time 

(seconds) 

One Call 

(seconds) 

RL 431.593 0.14012 

IRL 2.024 0.00066 

IRLF 1.426 0.00046 

ISRLF 266.635 0.08657 

 

Table 2 shows the corresponding computation times for calculating the downstream utilities. Two 

interesting facts are shown here. First, the average computation time for one call has gone down 

for all iterative methods. This is due to the fact that each iteration is now warm-started. Second, 

the methods with a flag mechanism are now performing better than their counterpart without flag 

mechanism.  



IRLF is now performing ~300 times faster than RL, increased by a factor of 6 by using a flag 

mechanism. A total best performance will be achieved when for the first iterations no flag 

mechanism is used while for the later iterations a flag mechanism is used, when the total 

assignment is cold-started. 

4.3 Full Assignment Warm start 

Starting from the results of a previous assignment, the network is now slightly changed. For this 

example, we decrease the maximum speed on the highway to 100km/h instead of 120km/h. Only 

the normal formulation (RL) is not able to be warm-started. As the other methods start from a point 

in the solution space that is close to the final equilibrium, it takes them less iterations. This leads 

to less method calls and thus faster total computation time. 

The flag mechanism shows it true potential when the network size is large and the variation on the 

network is small compared to the used starting equilibrium. 

4.4 Small Variance Case or Large Network 

When we set the variance parameter (µ) to be very small, the values of the z vector and M matrix 

becomes incalculable. This means that the first three methods (RL, IRL and IRLF) do not produce 

a useful result as they assume the destination not reachable or only by very close origins.  

ISRL and ISRLF are not only useful when the variance parameter is small. When the network is 

very large, the downstream utilities can become so negatively large, the calculations round it to 

negative infinity which means that the destination is not reachable. Even with these special 

formulations, the methods are faster than calculating the inverse of a matrix.  

5. Future work 

The original recursive logit does not handle correlation between different alternatives (i.e. it 

implements a multinomial logit route choice model). However, (Mai, Fosgerau and Frejinger, 

2015) developed the Nested Recursive Logit. This model uses different variance parameters for 

each link, representing the correlation among them. To be able to do this, they use an iterative 

solution scheme. This model could be easily implemented in the four different methods to calculate 

the downstream utility. This will be done in future work. 

Another point for future work is the fact that while calculating the downstream utilities iteratively, 

there is information gained by the method to identify cycles that attract too much probability (see 

(Verstraete and Tampère, 2019). Or even in the worst case, make the matrix singular which would 

also mean that the iterative procedure would not converge. By calculating the downstream utilities 

iteratively, one can calculate the influence a value has on its own. We want to use this in the first 

iteration of an assignment to close certain turns on cycles, such that this influence is no longer 

existing and the singularity is removed. 

6. Conclusions 

By changing the formulations of the problem, the method to calculate the downstream utilities 

becomes much more efficient, about 300 times faster for cold starting an assignment and even 

more for a warm-started assignment. The new formulations make it also possible to work on larger 



networks. It also increases the feasible solution space of the variance parameter due to overcoming 

numerical errors. 

These modifications make the Recursive Logit idea a real possible route choice model in a static 

or dynamic traffic assignment. The stable route choice made convergence smooth and limited the 

iterations needed. With these modifications, each iteration is even faster. 

Further research will eliminate cyclic routes from the implicit, complete route set that distort the 

solution of the Recursive Logit model. After this, a fair comparison between existing route choice 

models and the recursive logit idea can be made. 
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