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Abstract

This study analyses factors associated to bicycle accidents by a notion of Palm theory for traffic condi-

tions. The method allows for the comparison of the distribution of conditions as seen by an arbitrary cyclist

(the Palm distribution) with those seen by a cyclist subject to an accident (the accident distribution). This

allows for a straight forward assessment of the relative risk change given different conditions as well as their

statistical significance. The study is based on accident data from police reports of bicycle accidents over

4 years, in Copenhagen and Frederiksberg (N = 1136). Relative risk change compared to the overall risk

(Palm frequency) was evaluated given time, weather and seasonality. Relative risk increase was found to be

significant at night (0-4) as well as in morning and afternoon peak hours. Upon further evaluation, the night

effect is only significant in the weekend, while morning and afternoon peak are only associated to significant

increase during the week. This demonstrates how using over-aggregated explanatory variables might cause

misleading conclusions with regard to interventions. Furthermore results indicate that precipitation is as-

sociated to a general increase in the riskiness. Overall the Palm distribution for traffic conditions offers a

novel way to capture factors associated to bicycle accidents.

1. Introduction

With a growing world-wide concern regarding man-made climate change (Stocker and Midgley, 2013),

cycling is being endorsed as a means of transportation that improves both urban livability and physical

health of users (Infrastructures, 2015).

A reported barrier to increase the mode share of the bicycle is fear of accidents (Horton, 2016; Transport

for London, 2014; Vejdirektoratet, 2018). As such a thorough understanding of the factors associated to

bicycle crashes is needed.

Previous research into crash count analysis has primarily made use of different count model regressions

using multivariate parametric approaches Mannering and Bhat (2014). This allowed researchers to study the

effects of different characteristics present at the accident, by analysing estimates in relation to the response in

their models. Such models mainly used monthly or daily crash counts as response variable. This means that

∗Corresponding author. Tel: +4542956003
Email addresses: mskyum@dtu.dk (Marcus Skyum Myhrmann ), smab@dtu.dk (Stefan Eriksen Mabit)



some level of aggregated variables such as median or accumulated rainfall (Theofilatos and Yannis, 2014)

(for weather), Average Annual daily traffic (AADT, for traffic flow) (Mannering et al., 2016) were used.

These values have various limitations. For example it is well known that weather conditions are confounding

factors, affecting both exposure and likelihood of being in an accident (Stipdonk, 2008). Similarly AADT,

while being a somewhat telling measure with regard to the size of the road, yields little information about

the traffic state at the time of the accident. Furthermore the models are most often based on accident

records solely. This data alone provides little information on the standard behaviour of the ”system” such

as confrontations and near misses, as it effectively does not see them.

The information on standard behaviour is applied by Norros et al. (2016) in the context of car accident

analysis. They address how detailed traffic data provide insights in explaining crash data. With that in

mind, this study intends to employ a non parametric model for evaluating the bicycle crash risk when taking

account for bicycle flow and weather at an hourly level.

The applied method is based on the notion of Palm probability conceptualised for traffic conditions

(Norros et al., 2016). The method stems from the theory of count processes and describes conditions from

the reference frame of a uniformly randomly chosen random point. In this case the random point will be

an arbitrary bicyclist. Thereby the method allows for a straight forward comparison of the distribution of

conditions ’seen’ by an arbitrary cyclist to that ’seen’ by the cyclists subject to an accident, as well as the

statistical significance.

Simply put, it allows us to investigate whether the proportional occurrence of accidents given certain condi-

tions is significantly different from the proportional amount of cyclists given the same conditions.

Taking into account the recent years of changing of the weather towards the more extreme (Allan and

Soden, 2008), in-depth understanding on which weather conditions lead to increased risk of accidents is

crucial for future policy making and preventive efforts.

Therefore the aim of this study is to study the road and weather conditions associated to accident risk

for bicycles. To deliver relevant results, enabling meaningful interventions, the analysis will not only assess

first-order effects. The study will address and evaluate the interaction of multiple factors that are often

neglected in classic parametric multivariate model studies. This is important as the interactions could easily

be believed to have non-linear effects, which are important.

2. Method

Palm probability is a notion known from the theory of random point processes. It expresses the distri-

bution of events as ”seen” by a randomly chosen point from the point process. In our setting it equivalently

describes the distribution of traffic and road conditions as ”seen” by an arbitrary cyclist. The idea to apply

such a variant of the Palm probability was pioneered by Innamaa et al. (2013) and further conceptualised

by Norros et al. (2016).
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Assuming we have a time series of continuously observed conditions St,r ∈ S (various weather and traffic

conditions) and the associated traffic Mt,r at a given road sections r and time t. Then the Palm probability

of a specific condition C ∈ S is found by weighing the time-average probability by the traffic Mt,r.

P 0(C) =
1

M tot

R∑
i=1

∫
ISt,r∈CMt,rdt where M tot =

R∑
r=1

∫
Mt,rdt (1)

As such the palm probability describes the conditions as ”seen” by an arbitrary cyclist picked from the

combined road sections at time t. However, since the traffic and weather observations in this study are hourly,

i.e t ∈ {1, 2, 3, 4, 5, ..., 24}, the integral reduces to a sum. And hence the Palm probability of a conditions

C ∈ S

P 0(C) =
1

M tot

R∑
r=1

T∑
t=1

Mr,t1{St,r∈C} (2)

Equivalently we describe the empirical accident distribution, i.e. the distribution of conditions seen by a

recorded accident, of road conditions as

P acc(C) =
1

Nacc

R∑
r=1

T∑
t=1

kr,t1{Sr,t∈C} (3)

Taking the ratio of the empirical accident distribution of conditions C and the equivalent Palm distri-

bution we obtain the average proportional change in the intensity of having an accident given condition C

(Norros et al., 2016).

P acc(C)

P 0(C)
≈ E0

[
α(·)
α0

∣∣∣∣C] (4)

where α0 denotes the overall mean intensity of causing an accident for each cyclists and α(·) is the

intensity given of causing an accident given the traffic conditions St,r ∈ C under the conditions C.

This notion stems from the underlying assumption that these follow a Poisson random process and there

being a positive intensity of having an accident. Equivalently equation 4 describes the increase or decrease

in the relative risk, when compared to the overall risk level stated by the Palm distribution of the condition.

Hence a ratio of 1, means that there is no change in the relative risk associated to a specific condition, while

a ratio higher or lower than 1 indicates the fractional effect indicated, i.e 0.5 indicates a 50% reduction in

the relative risk given a specific condition. This method therefore presents a non-parametric method for

assessing the relative crash risk given any condition C.

Significance testing of the relative risk change given conditions C is performed by obtaining the exact

Binomial confidence intervals [pl, pu] of the Palm distribution P 0(C) given the number of accidents Nacc. The

reason for this is due to the low probabilities under some conditions. Under the assumption that any cyclist

has a constant stochastic intensity for being involved in an accident, described by the Palm distribution,

then if P acc /∈ [pl, pu] we assess the the effect to be significant at the chosen level. The lower and upper

confidence intervals are determined as
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Figure 1: Image of the bicycle network used for model analysis. The red dots show the police registered bicycle accidents, and

the blue shows the network structure

pu = 1−BetaInv(
α

2
, N − P 0(C) ∗Nacc, P

0(C) ∗Nacc + 1) (5)

pl = 1−BetaInv(1− α

2
, N − P 0(C) ∗Nacc + 1, P 0(C) ∗Nacc) (6)

where P 0(C) ∗ Nacc describes the expected number of accidents for condition C given Palm distribution

P 0(C) and the total number of observed accidents. We set α = 0.05, thus assessing significance at the 5%

level.

3. Data

3.1. Accident data

The study analysed N = 1136 bicycle accidents recorded by the police, having occurred in either Copen-

hagen or Frederiksberg municipality between 2014 and 2017. Each accident is registered along with its

location. Based on the coordinates of the crash location, each accident was assigned to a bicycle lane link

in Copenhagen or Frederiksberg, from a “bicycle network” extracted from crowdsourced OpenStreetMap

(OSM) data. A plot of the network and accidents used in the study is shown in figure 1.

3.2. Traffic Volume

Far from all bicycle links in the bicycle network are monitored continuously. Previous work however

have shown how both model generated estimates of exposure as well as ”expert knowledge” from Transport

agencies can be used with excellent results (Aldred et al., 2018; Malin et al., 2017)
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In this study traffic assignment to the bicycle links in the network is based on the Copenhagen Model

for Person Activity Scheduling (COMPAS) that produces daily activity plans for a synthetic population of

the area. By using the general traffic calculation method by The Danish Road Directorate we are able to

derive the hourly traffic for all days in the period of recorded accidents.

3.3. Weather data

Weather data was obtained from OpenWeatherMap for the entire Copenhagen region, including Fred-

eriksberg. The data contained hourly mean temperatures (◦C), wind-speeds (m/s) as well as weather type

categories: ”clear”, ”clouds”, ”rain”, ”mist”, ”fog”, ”drizzle”, ”snow”, and ”thunderstorm”. The distribution

of the main categories over the 4 years are shown in table 1.

Weather category Clear Clouds Rain Mist Fog Drizzle Snow Thunderstorm

Observed Frequency 22.5% 37.0% 18.8% 11.5% 3.7% 3.6% 2.6 % 0.2%

Table 1: Table showing the frequency of the different main weather categories

4. Results and Analysis

4.1. Weather

First we examine the different weather effects that could be thought to be factors. And their related

effect on the relative risk and statistical significance.

4.1.1. Main weather classification

The main weather classification are hourly based and explain which overall weather type was the dom-

inating during the hour in question. Furthermore it constitutes an overall classification such that light,

moderate and heavy rain combine to form ”rain”.

On the left plot of figure 2 we see that the weather categories drizzle, mist or snow are associated to

average increases of the relative risk of a crash, when compared to the overall risk level. The statistical

significance of the effects, shown in the right plot of figure 2, indicates that only the effects of ”drizzle” and

snow are significant. The findings are consistent in that precipitation is found to be associated to increased

relative crash risk, which is in line with previous literature (Theofilatos and Yannis, 2014; Karlaftis and

Yannis, 2010). However, the category rain is not correlated with an increase in the relative crash risk, when

compared to the overall risk. This might however be related to the splitting of precipitation types.

Therefore we combine the variables ”rain”, ”drizzle”, ”mist” and snow, to form the explanatory variable

”precipitation”, and examine the relative risk change compared to the overall risk that this variable presents.

Furthermore we take into account the duration of precipitation leading up to the accident. This has two

reasons: 1) The accident records and weather records are aggregated by the hour and therefore not certain
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Figure 2: Left: The average proportional increase given the event of different main weather categories
Q(C)

P0(C)
. Right: The Palm

probability P 0(C) and average accident probability observed and calculated given the different weather categories.

that it was raining at the time of the accident. 2) Rain at time t = 0 does not constitute that the road is

slippery at time t = 0. The results are shown in figure 3. The left plot shows the ratio density.

Figure 3: Density plot and assessment of statistical significance for the duration of the precipitation

The ratio densities in figure 3 indicate that risk change given the duration of rain being between 0 and

15 hours is generally in line with the findings in Hermans et al. (2006), which states that especially longer

duration of precipitation is significantly associated to the increased number of crashes.

4.2. Accident timing and seasonality

We are interested in evaluating if some days of the week and hours of the day are more indicative of

accidents than others. Figure 4 shows the effects of the hours of the day. In the left plot of the figure we see

that there is great variability in the relative risk change given the hour of the day. Remarkably we see that

the relative risk increase in the hours midnight to 4 am are associated to more than a doubling of the overall

risk. These are all statistically significant, as seen in the right plot of figure 4. Accidents in the afternoon

peak 16-18 indicate a risk increase of ≈ 50% along with the hour just after, only the effects from 18-19 are

significant. In the morning peak hours (06-08) only 8 o’clock is associated to a risk increase. Similar to the
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afternoon peak, the hour just after the peak period is associated to an increase of the relative risk. Similar

findings were made by Norros et al. (2016) for cars on the Helsinki ring road, although they found a decline

in the relative risk in the morning peak hours.

Figure 4: Left: The average relative risk change given the hour of the day
Pacc(C)

P0(C)
. Right: The Palm probability P 0(C) (blue)

and Pacc(C) (red) given the hour of the day.

The relative risks and significance of the days of the week are shown in table 2. This shows an increase

in relative risk as a function of day during the working week, with friday being significant, and a significant

decrease in the weekend days

Mon Tue Wed Thu Fri Sat Sun

Palm frequency 0.15 0.15 0.15 0.15 0.15 0.11 0.12

Density ratio 1.04 1.05 1.04 1.13 1.17 0.78 0.65

Significant N N N N Y Y Y

Table 2: Relative risk change and statistical significance given day of the week.

Previous research has shown significant differences in the exposure and risk profile of working week and

weekend travel (Dozza, 2017). Therefore we evaluate the difference in the riskiness related to the hours of

the day in weekends and working week. The results of this are shown in figure 5

The results shown in figure 5 are day and night in comparison with the results for the aggregated hour

of the day in figure 4. Most importantly the effects observed in figure 5 paint a much more telling picture.

For the weekend, we observe a significant increase in relative risk for the period from 0-4 in the morning,

> 300% . This dominated the effects for the aggregated week seen in figure 4, as no significant risk change is

observed during the working week for these times. Interpreting this to be related to going out and intoxicated

behaviour is now much more plausible. Furthermore the weekend has no morning and afternoon peak and

”those times” are not associated to increased risk. This is incremental to later intervention efforts. During

the working week, we observe significant increases in the relative risk, compared to baseline at morning peak

8-9 and afternoon peak 16-19, with the exception of 17:00. In the morning peak, the relative risk is increased
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Figure 5: Top: Density ratio and significance of the hour of the day effect, conditioned on being during the working week.

Bottom: Density ratio and significance of the hour of the day effect, conditioned on being during the weekend

by ≥ 30% and in the afternoon ≈ 50%. Furthermore evening hours are also associated to increased crash

risk, although only the effect centred at 23:00 is significant. This could be somewhat attributed to darkness,

but light hours in Copenhagen vary a lot between winter and summer and therefore this cannot be said with

certainty. The relative risk change in the peak hours could be attributed to people being tired respectively

in the morning and after work. Similar results have been found by Dozza (2017); Pack et al. (1995). An

interesting finding is the increased risk after the maximum Palm frequency peak in the morning. This could

indicate that people are late for work and hence being distracted and driving faster.

Regarding darkness separately, we find that darkness is associated to a significant relative risk increase

of 17%, the result is shown in table 3. This is in line with previous research (Johansson et al., 2009), which

however compares risk in darkness to risk in light.

Conditions Palm frequency Density Ratio Significant

dark 0.44 1.17 Y

light 0.57 0.87 Y

dry 0.70 0.87 Y

wet 0.30 1.30 Y

Table 3: Relative risk change and significance given dark/ light and wet or dry
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Season Winter Spring Summer Autumn

Palm frequency 0.16 0.28 0.33 0.24

Density 1.3 0.9 0.9 1.06

Significant Y Y Y N

Table 4: Seasons based on sun positions, their associated relative risk change compared to the overall risk and assessment of

significance

When taking a broader look and evaluating the seasonality we find that summer and spring are associated

to significant decreases and winter to a significant increase in the relative risk, when compared to the overall

risk as seen in table 4.

4.3. Combined effects of multiple factors

Our findings with regard to the hourly effects of respective working week and weekend domains illustrate

the importance of considering effects that might only be apparent due to aggregation.

The literature on weather effects proposes that it has an effect in terms of both slippery road surface as

well as impairing vision (Theofilatos and Yannis, 2014). Other studies equally report impaired vision and

darkness to be key drivers in crash rates (Twisk and Reurings, 2013). In the study by Konstantopoulos

et al. (2010) the effect of rain and darkness is even studied in combination with regard to accident risk. Such

studies however have primarily regarded car drivers.

Rain on a bicycle does not only impair visibility and surface grip, but also impairs the mobility of the cyclists.

Similar to cold weather, one will often observe that cyclists in rainy weather try to take a more compact

position on the bike, which in turn limits mobility on the bicycle.

As a final investigation we analyse the combined effects of precipitation with darkness and seasonality.

The results of these combinations are summarised in table 5, where the relative risk is seen to be non-linear

depending on the combinations of explanatory variables. This becomes clear as the density ratios in table 5

do not necessarily match the linear combinations of equivalent density rations in table 4 and 3.

5. Discussion and Conclusion

This study uses the Palm probability on traffic and weather conditions in a study bicycle of accidents in

Copenhagen, to perform an in-depth analysis of weather and time conditions as crash factors. The results

highlight that the method of contrasting the distribution of conditions from a crashed cyclist’s point of view

to those of an arbitrary cyclist, yields more relevant outcomes.

While the methodological frontier of statistical and econometric modelling with regard to accident analysis

is more and more adept at identifying factors and unobserved heterogeneity associated to crash risk and injury

severity outcomes (Mannering and Bhat, 2014; Mannering et al., 2016), these do not always prove the easiest

conclusions to base interventions on. The non-parametric approach conceptualised by Norros et al. (2016),
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Combined effects Palm frequency Density Ratio Significant

dark (dry) 0.29 0.99 N

dark (wet) 0.14 1.46 Y

light (dry) 0.41 0.79 Y

light (wet) 0.16 1.16 Y

autumn (dry) 0.15 0.90 N

autumn (wet) 0.10 1.76 Y

spring (dry) 0.21 0.89 N

spring (wet) 0.07 0.82 Y

summer (dry) 0.24 0.80 N

summer (wet) 0.07 0.90 N

winter (dry) 0.10 0.97 N

winter (wet) 0.06 1.58 Y

Table 5: Relative risk change and significance when accounting for variable interaction and their effect of the risk of being

subject to a bicycle accident

applied in this study, delivers straightforward results that are easily interpreted and therefore actioned upon.

A simple model comes at the cost of not accounting for a lot of the unobserved heterogeneity discussed in

Mannering et al. (2016), however it is believed that the finer ”granularity” of the variables in this study

make up for it as it allows for a much finer picture with regard to factors associated to bicycle crashes in

Urban settings. Alternatively future research may use our approach combined with methods allowing for

heterogeneity.

5.1. Conclusion

The specific results on precipitation given different seasons, and visibility as well as accounting for the

differences in traffic of the working week and weekends reveal the importance of accounting for 2nd order

interactions, and the fallacy of some aggregated variables. This is especially important to account for

if meaningful interventions and policy changes are to be made, ensuring further safety of the bicyclists.

Specifically results indicate that continued precipitation leading up to the accident shows a general increase

in the relative risk of having an accident, compared to the overall risk. The risk change associated to the time

of day revealed significant increases in the relative risk in early morning hours (0-4) as well as post-afternoon

peak (18-19), compared to the overall risk. However, upon splitting time of day into working week and

weekends, the results indicate significantly increased crash risk in the late morning peak (8-9), afternoon

peak and early evening (16, 18-20), while the weekend shows that early morning hours (0-4) are associated

to significant increases in the relative risk compared to the overall crash risk.
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