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ABSTRACT

Data censorship involves two sets of corresponding values: known observations and latent (i.e.,
unknown) true values. Modeling of censored data has been researched in multiple works, including
the famous Tobit model for known and deterministic censorship. However, when modeling demand
for transport services, the censorship challenge becomes two-fold: not only is demand data inherently
censored by limited supply, but it also typically lacks any account of the difference between observed
and true demand. To address this problem, we devise and analyze two complementary methods for
censored modeling, when no indication is given about the extent of censorship. The first modeling
method is generic, while the other method is non-parametric and utilizes domain knowledge. Our
experiments demonstrate both the importance of accounting for censorship and the capability of each
method in reconstructing the underlying, latent patterns.

Keywords censored modeling · stochastic censorship · latent censorship · transport demand

1 Introduction

Transport services require careful planning to satisfy highly volatile demand with limited supply. For example, transport
service providers need to plan ahead how large the fleet shall be, where and when vehicles shall be deployed, and how
much demand is expected to increase in the future. For optimal planning, reliable models of demand are thus needed to
predict and meet user needs.

Transport demand modeling commonly relies on historical records of service usage to capture demand patterns.
However, historical data about service usage is inherently limited by the historical supply that the service provider itself
offered. Consequently, such data represents a biased, or censored, version of the underlying demand pattern that we
wish to model.

If this inherent censorship is not accounted for, the resulting demand model will necessarily yield a biased estimate
of demand and an inaccurate understanding of user needs, thereby leading to sub-optimal operational decisions.
Furthermore, historical transport data commonly lacks explicit indication of which data records are censored and
how intense the censorship is. Hence in the transport domain, censored modeling is both necessary and particularly
challenging for accurate forecasting.

In this work, we construct and analyze two complementary approaches for modeling censored data, when no explicit
information is given about the extent of censorship. The first modeling approach is generic, and we experiment it on
synthetically generated data to examine how well it can reconstruct the underlying, true signal. The second approach is
non-parametric and begins by estimating which observations are actually censored before modeling. We experiment
with this alternative approach on real-world taxi demand data, as we further elaborate separately in (Gammelli et al.
2020)
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Figure 1: The Tobit model.

2 Related Work

Data censorship involves two sets of corresponding values: known observations and latent (i.e., unknown) true values.
Each observation is either non-censored, so that it exactly equals the true value, or censored, so that it has been clipped
at some threshold above or below the true value.

An early form of censored modeling is the Probit model (Aldrich et al. 1984) for 0/1 observations, which assumes
that the probability of observing 1 depends linearly on the given explanatory features. James Tobin extended this to a
popular model for censored regression (Tobin 1958), now called Tobit, where the censorship threshold is fixed and
known. Tobit has also been extended through multiple variations (Greene 2011), such as: multiple latent variables
(Amemiya 1985), count data (Terza 1985), Quantile Regression (J. L. Powell 1986), autoregressive Tobit (S. X. Wei
1999), and combination with Kalman Filter (Allik et al. 2015). Other methods of censored regression have also been
suggested, predominantly for survival analysis, such as: Proportional Hazard models (Kay 1977), Accelerated Failure
Time models (L.-J. Wei 1992); Regularized Linear Regression (Li et al. 2016); and Deep Neural Networks (Biganzoli
et al. 2002; Wu et al. 2018).

A complementary approach to handle censored data is found in multiple data cleaning techniques. For instance, in the
bike sharing domain, Jian et al. (2016) and Freund et al. (2019) focus on obtaining an unbiased estimate of arrival rate
by omitting historical observations that are suspected as censored. In contrast, Albiński et al. (2018) replace censored
observations with historical averages. Generally though, replacing and omitting censored observations can lead to loss
of useful data, particularly when a large portion of observations are censored. It is thus more desirable to equip models
with censorship awareness, thereby taking advantage of the whole data.

This work differs from the above works in several respects. First, we do not assume that the given dataset explicitly
specifies which of the observations are censored, so that we treat censorship as stochastic and latent. Second, we offer a
generic modeling scheme, which relies neither on data cleaning nor on a predefined functional form for the modeled
phenomenon. In particular, we promote a non-parametric approach to modeling transport demand.

3 Methodology

3.1 Tobit Model for Deterministic and Known Censorship

The classic Tobit model concerns the following setting. We are given observations y1, . . . , yN , which we assume to be
independent. We also assume the existence of corresponding true values y∗1 , . . . , y

∗
N . For all i = 1..N , we say that yi is

censored if y∗i 6= yi, otherwise yi is non-censored and y∗i = yi.

The true values y∗i are latent, namely, they are neither given directly nor observed for censored yi. We are, however,
given also binary censorship labels b1, . . . , bn, so that for all i = 1..n: bi = 0 if yi is non-censored, otherwise bi = 1.
For example, in a shared transport demand setting, y∗i is the true, latent demand for shared mobility; the observed
demand maintains yi ≤ y∗i ; and censorship is affected by the difference between actual demand and available supply.

Tobit parameterizes the dependency of y∗i on explanatory features xi through a linear relationship:

y∗i ∼ N (βββ
Txi, σ

2) , (1)

where βββ and σ are trainable parameters. This is illustrated in Fig. 1 as a Probabilistic Graphical Model, where nodes
correspond to variables and parameters, edges are drawn from variables to conditionally dependent variables, and
frames denote repetition (e.g., N times); shaded nodes correspond to observed variables, and all other nodes correspond
to latent variables.
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Figure 2: Model M∗.

To derive the likelihood function of Tobit, let us consider the case of deterministic upper censorship, where we are given
some threshold h, and:

yi =

{
y∗i , if y∗i < h

h, if y∗i ≥ h
. (2)

By Eq. (1) and Eq. (2):

1. If bi = 0, then yi is non-censored and so its likelihood is:

1

σ
ϕ

(
yi − βββ

Txi

σ

)
, (3)

where ϕ is the standard Gaussian probability density function.

2. Otherwise, i.e., if bi = 1, then yi is censored and equal to h, hence its likelihood is:

1− Φ

(
h− βββ

Txi

σ

)
, (4)

where Φ is the standard Gaussian cumulative density function.

Finally, because all observations are independent, their joint likelihood is:

N∏
i=1

{
1

σ
ϕ

(
yi − βββ

Txi

σ

)}1−bi{
1− Φ

(
h− βββ

Txi

σ

)}bi

, (5)

which is a function of βββ and σ.

3.2 Model M∗ for Completely Latent, Stochastic Censorship

Consider now a completely latent censorship setting, where we are given a censored dataset without any censorship
labels or censorship thresholds. That is, we know that the given observations y1, . . . , yN are censored to some extent,
but do not know which and how much. This setting is particularly prevalent when modeling mobility demand; for
example, observations of public transport usage (e.g., taxi pickups and dropoffs, bus mounting and alighting, shared bike
rentals and returns) are commonly given without explicit indication of how close they are to actual mobility demand.

Our goal is to model the completely censored data, e.g., to predict future observations. On one hand, we could ignore the
censorship altogether, thus treating all observations as non-censored and equal to the latent, true values. However, such
censorship-unaware modeling can severely underestimate the true, latent variable, as our experiments will show too.
Therefore, we next develop and analyze censorship-aware models for better dealing with completely latent censorship.

First, we propose a generic model denoted M∗, as illustrated in Fig. 2. In M∗, variables xi, yi, y
∗
i , βββy, σ have the same

roles as in Tobit; unlike Tobit, censorship thresholds h∗1, . . . , h
∗
N are latent random variables that depend on features xi

per parameters βββh, σh, so that

h∗i ∼ N (f(βββh,xi), σ
2
h), y∗i ∼ N (g(βββ,xi), σ

2), yi =

{
y∗i , y∗i ≤ h∗i
h∗i , y∗i > h∗i

, (6)
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Figure 3: Tobit Type II model.

where f, g are freely chosen functional forms. For example, these forms can be linear as in Tobit, so that f(βββh,xi) =
βββ

T
hxi and g(βββ,xi) = βββ

Txi.

We now derive L∗, the likelihood function of M∗. Let

z∗i = y∗i − h∗i . (7)

By Eq. (6), each observation yi is censored if-and-only-if z∗i > 0, namely,

yi =

{
y∗i , z∗i ≤ 0

h∗i , z∗i > 0
. (8)

Also, by properties of the Gaussian,

z∗i ∼ N
(
f(βββh,xi)− g(βββ,xi),

√
σ2 + σ2

h

)
. (9)

Hence by the law of total probability,

Pr (yi|βββ, βββh, σ, σh) = Pr (yi|z∗i > 0) Pr (z∗i > 0) + Pr (yi|z∗i ≤ 0) Pr (z∗i ≤ 0)

= Pr (h∗i = yi) Pr (z∗i > 0) + Pr (y∗i = yi) Pr (z∗i ≤ 0)

= ϕh (yi) (1− Φz (0)) + ϕy (yi) Φz (0) , (10)

where ϕh is the PDF of h, ϕy is the PDF of y∗i , and Φz is the CDF of z∗i . Finally, by independence of y1, . . . , yN ,

L∗ (y1, . . . , yN , βββ, βββh, σ, σh) =

N∏
i=1

Pr (yi|βββ, βββh, σ, σh)

=
N∏
i=1

{
ϕh (yi) (1− Φz (0)) + ϕy (yi) Φz (0)

}
. (11)

We conclude the description of M∗ by comparing it to the commonly used Tobit Type II model, which is illustrated in
Fig. 3. In Tobit Type II as well, observations depend on two latent random variables, so that

yi =

{
y∗2,i, y∗1,i ≤ h
h, y∗1,i > h

, (12)

where h is a given threshold, as in the original Tobit model. y∗1,i thus controls whether yi is censored or not, and in
the latter case, y∗2,i separately controls the value of yi. M∗ thus differs from Tobit Type II in two respects: 1) in M∗,
censorship thresholds are stochastic and unknown, 2) in M∗, both latent variables symmetrically control the observed
values.

3.3 Gaussian Processes with Censored Likelihood

For non-parametric modeling of censored data, we now briefly describe Gaussian Processes (GPs) (Rasmussen and
Williams 2005), which we also use later in Section 4.2. Given a dataset {(xi, yi)}Ni=1 with N input vectors xi and
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scalar outputs yi, a Gaussian Process models the latent function that generates the data by defining a distribution over
functions. This distribution is a multivariate Gaussian, defined by

p(f∗|x1, . . . ,xN) = N (m,K) , (13)

where f∗ = [f∗1 , . . . , f
∗
N ]T is a vector of latent random variables, m is a mean vector, and K is a covariance matrix with

entries defined by a kernel function k, so that Ki,j = k(xi,xj). The kernel k(x,x′) should properly reflect similarity
between input vectors, hence for the data in our experiments in Section 4.2, we use a combination of the following two
kernels:

1. Squared Exponential Kernel (SE):

kSE(x,x′) = λ2 exp

(
− (‖x− x′‖)2

2τ2

)
, (14)

where ‖·‖ denotes Euclidean distance, and λ, τ are hyper-parameters.

2. Periodic Kernel:

kPer(x,x′) = λ2 exp

(
−2 sin2(π ‖x− x′‖ /ρ)

τ2

)
, (15)

where ρ is another hyper-parameter.

As is customary in GP modeling, we shall assume without loss of generality that the joint Gaussian distribution is
centered on m ≡ 0, and model each yi as generated from a Gaussian distribution centered on f∗i with noise variance
σ2. Also as common, we select kernel hyper-parameters in our experiments through Type-II Maximum Likelihood,
also known as Empirical Bayes, whereby latent variables are integrated out. The likelihood function we use in GP
experiments is

N∏
i=1

{
1

σ
ϕ

(
yi − f∗i
σ

)}1−bi{
1− Φ

(
yi − f∗i
σ

)}bi

, (16)

which we derive from Eq. (5) by replacing βββ
Txi, the Tobit prediction, with f∗i , the GP prediction. We elaborate more

on this likelihood function and its inference in (Gammelli et al. 2020), and so leave these details outside of this work.

4 Experiments

4.1 Experiments with M∗

As a first step in reasoning about the quality of modeling with M∗, we try out several artificially generated datasets,
each featuring a different functional form of y∗ and h∗. For each functional form, we also examine the effect of adding
white noise εi independently to each of y∗i and h∗i . We experiment with εi ∼ N (0, σε) for σε = 0 (no noise), σε = 0.1
(light noise), and σε = 0.3 (medium noise). In each experiment, we fix σ = σh = σε, so as to fit only βββ and βββh. We
then fit M∗ using Maximum Likelihood Estimation (MLE), by minimizing the Negative Log-Likelihood (NLL) of L∗,
namely,

NLL (βββ) = −
N∑
i=1

log
{
ϕh (yi) (1− Φz (0)) + ϕy (yi) Φz (0)

}
, (17)

where βββ denotes all of βββy, βββh. Minimization is done via Powell optimizer (M. J. Powell 1964) with 100 random restarts.

The functional forms we experiment with are as follows.

1. Linear:
y∗(x) = βy,1x+ βy,0, h∗(x) = βh,1x+ βh,0 , (18)

where we choose βy,1 = 1, βy,0 = 0, βh,1 = 0, βh,0 = 10.

2. Sinusoidal:

y∗(x) = sin

(
β0,y + β1,yx

30

)
, h∗(x) = sin

(
β0,h + β1,hx

30

)
, (19)

where each β is independently sampled from N (0, 3).
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(a) Linear (b) Sinusoidal

(c) Polynomial

Figure 4: Completely latent censorship for different functional forms with light noise.

3. Polynomial:

y∗(x) =

k∑
i=1

βi,yTi

( x

1000

)
, h∗(x) =

k∑
i=1

βi,hTi

( x

1000

)
, (20)

where k is a given polynomial degree, Ti(x) denotes the i’th Chebyshev polynomial, and each β is indepen-
dently sampled from N (0, 1). We experiment with k = 5.

We illustrate these forms in Fig. 4 for light noise. In all experiments, x = [−1000,−999, . . . , 999].

We evaluate the performance of M∗ through two measures, both pertaining to the difference between the parameters
β̂ββ of fitted M∗ and the actual parameters βββ

∗ which the dataset uses. The first measure is NLL as in Eq. (17), and the
second measure is Maximum Absolute Error (MxAE), defined as:

MxAE = `∞

(∣∣∣β̂ββ− βββ
∗
∣∣∣) . (21)

The experimental results are given in Table 1. Under zero noise, β̂ββ of M∗ is nearly identical to the actual βββ
∗. As

noise gradually increases, so does β̂ββ become increasingly different from βββ
∗ Also, as the functional form becomes more

complex and the noise increases, NLL(β̂ββ) increasingly drops below NLL(βββ∗). This suggests that as the underlying
latent signals become more complex and noisy, the original parameters may no longer account for the highest possible
likelihood of the observed data.

Form Noise NLL(β̂ββ) NLL(βββ
∗) MxAE

Linear
None -737.246 -737.246 2.21e-7
Light 270.264 270.458 0.042
Medium 734.494 735.866 3.808

Sinusoidal
None -7367.317 -7367.317 3.27e-4
Light -1785.655 -1779.856 0.328
Medium 404.872 411.252 1.104

Polynomial
None -7369.691 -7369.744 3.98e-4
Light -1808.441 -1785.326 0.059
Medium 304.161 392.614 1.918

Table 1: M∗ Performance
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Figure 5: Example of selected censorship labels for γ = 0.1, c = 0.5.

4.2 Experiments with Gaussian Processes

Model M∗ is designed to handle a general setting of latent censorship, where no censorship labels are assumed. Let us
now present another approach for handling this setting by taking advantage of domain knowledge to estimate censorship
labels before fitting models. To demonstrate this alternative approach, we use a case study of short-term transport
demand, where we estimate censorship labels per available supply.

The data for this case study is pickups and dropoffs of yellow hail-based taxis (Donovan and Work 2014) within
an approximately 1 km × 1 km squared area near LaGuardia airport in New York City. The true pickup counts,
y∗ = [y∗1 , . . . , y

∗
672], are aggregated per 15 min consecutive intervals in the first week of June 2010. At that time, NYC

Taxis were almost entirely of the yellow type and thus accounted for virtually all ride-hailing demand.

Using this dataset, we wish to estimate the effectiveness of our approach under varying extent of censorship. For this,
we employ the following scheme, which both labels observations as censored and, for the sake of experimentation,
decreases the values of censored observations. For every time step i = 1..672, the scheme uses di−1, the number of
dropoffs observed in the previous lag (i.e., taxi supply), to stochastically censor y∗i , the true pickups (i.e., taxi demand),
as follows.

First, each censorship label bi ∈ {0, 1} is treated as a Bernoulli variable with success probability{
1 + exp

(
ln

(
1− γ
γ

)
− yi − di−1

yi

)}−1
, (22)

so that approximately 0 < γ < 1 of all y∗i are labeled as censored. Next, each observation for which bi = 1 is set
to yi to (1− c)y∗i , where 0 ≤ c ≤ 1 represents unsatisfied ride-hailing demand. Fig. 5 illustrates an example of this
censorship scheme for a certain combination of γ, c.

We experiment with γ = 0.1, 0.2, 0.3, 0.4 and c = 0, 0.1, . . . , 1. For these values of γ, the average percentages of
censored observations are, respectively, 13%, 23%, 32%, 40% – close to the expected values. The censorship magnitude
increases with c, so that c = 0 and c = 1 represent limiting cases: when c tends to 0, censored observations become
very close to true values, whereas when c tends to 1, censored observations are zeroed.

In these experiments, we compare between three Gaussian Process models:

1. Non-Censored Gaussian Process (NCGP), which completely ignores the existence of censorship, as is quite
common in literature.

2. Non-Censored Gaussian Process, Aware of censorship (NCGP-A): similar in function to NCGP, but trained
only on non-censored points. NCGP-A thus avoids exposure to a censored, biased version of the true demand,
but does so at the price of potentially losing useful information.

3. Censored Gaussian Process (CGP): this model considers all observations – censored and non-censored –
through the likelihood function defined in Eq. (16).

For all models, the explanatory features are X = [x1, . . . ,x672], where for all time steps i = 1 . . . 672, xi consists of:
i, the corresponding hour-of-day in 0 . . . 23, and the corresponding day-of-week in 0 . . . 6. For NCGP-A and CGP, xi

also contains the binary censorship label bi. The GP kernel for all three models is
k (x,x′) = kSE (x,x′) + kPer (x,x′) , (23)
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(a) Evaluation over all observations.

(b) Evaluation over only non-censored observations.

Figure 6: Performance of Gaussian Process models with censored likelihood. Extreme values of NCGP are omitted for
easier comparison between NCGP-A and CGP.

per Eq. (14) and Eq. (15).

All models are trained via BFGS optimizer (Fletcher 2013) for at most 1000 iterations, starting from the same initial
kernel hyper-parameters. Because our censorship scheme is stochastic, we experiment with each γ, c combination
independently a total of 30 times. In each independent experiment, we fit and evaluate through cross-validation with 21
time-consecutive folds, each consisting of 32 observations over 8 hours. For each γ and c, we evaluate by comparing
the latent pickup counts to the predicted means over all 30 experiments, both on the entire dataset and exclusively on
non-censored observations.

The results are illustrated in Fig. 6. As γ and c increase, so do the percentage of censored observations and the
intensity of censorship. Hence by ignoring censorship, NCGP deteriorates rapidly as the censored observations draw
it downwards, away from the latent pickups. The performance of NCGP-A does not depend on censorship intensity,
because NCGP-A discards of all censored observations before fitting. NCGP-A maintains a rather stable performance
as γ increases, and so apparently has enough non-censored points for constructing a stable fit.

Finally, CGP takes advantage of the censorship labels, so that it often reconstructs the latent signal better than the
censorship-unaware models do. In particular, CGP is the best performing model when evaluated on only non-censored

8



observations, which implies that CGP is also the more reliable model when observations are known to accurately reflect
the latent ground truth.

In conclusion, we note that we have also experimented with a similarly sized spatial area in the middle of Manhattan,
NYC. Contrary to the time series used in this Section, the Manhattan cell exhibited a repetitive and regular demand
pattern, for which NCGP-A and CGP performed quite closely. The noticeably better performance of CGP in this
Section thus suggests that the advantages of censored modeling emerge in more challenging settings — where the
ability to extract meaningful information from censored observations is indeed essential for capturing the underlying
demand pattern.

5 Summary and Future Work

Demand modeling is a fundamental building block in numerous decision making processes, and commonly relies
on extrapolating knowledge from historical data. A reliable demand prediction model must take into consideration
censoring, particularly so when demand is implicitly limited by supply. Censored modeling is especially challenging in
the transport domain, where datasets often lack explicit information about which records are censored and how intense
the censorship is.

We have devised two complementary approaches for dealing with this challenge of latent censorship. The first approach
is generic, and our experiments on synthetic data show that it can reconstruct the latent signals for various functional
forms with light to medium noise. The second approach uses domain knowledge to reconstruct censored labels before
fitting models, and we have demonstrated its effectiveness on real-world transport data through non-parametric modeling
with Gaussian Processes. Our experiments also show that models which ignore data censorship are prone to yield a
biased estimation of the underlying, latent transport demand.

Both of our approaches thus leverage the information embedded in censored data, rather than discard it through cleaning
techniques. For future work, we plan to apply the generic modeling approach also to real-world datasets of transport
demand. We further plan to expand the non-parametric modeling approach to multiple spatial areas and utilize their
spatio-temporal correlations.
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