
hEART 2020 - 9th Symposium of the European Association for Research in Transportation

September 1-3, 2020, Lyon, France

A predictive large neighborhood search for the dynamic electric
autonomous dial-a-ride problem

Claudia Bongiovanni 1 Mor Kaspi 2 Jean-François Cordeau 3

Nikolas Geroliminis 1

1Urban Transport Systems Laboratory, School of Architecture, Civil & Environmental Engineering
École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

{claudia.bongiovanni,nikolas.geroliminis}@epfl.ch
2Department of Industrial Engineering

Tel-Aviv University, Tel-Aviv 69978, Israel
{morkaspi}@tauex.tau.ac.il

3Department of Logistics and Operations Management
HEC Montréal, H3T2A7 Montréal, Canada

{jean-francois.cordeau}@hec.ca

ABSTRACT

The dynamic electric autonomous Dial-a-Ride Problem (e-ADARP) is a generalization of
the dial-a-ride problem which employs electric Autonomous Vehicles (e-AVs) to provide shared
rides to on-line requests. The goal of the dynamic e-ADARP is to maximize the number of served
requests while minimizing operational cost and user excess ride time. To reach this goal, meta-
heuristics are designed to modify vehicle-trip assignments as information reveals over time. Dif-
ferently from human-driven vehicles, e-AVs can be re-routed as often as desired in the course
of operations. Given the on-line nature of the problem, plan modifications need to be efficiently
performed to timely notify users and provide new instructions to the vehicles.

In this work, we present a new extension to the family of Large Neighborhood Search
(LNS) metaheuristics, which employs a machine learning component to select destroy/repair cou-
ples from a pool of competing algorithms. At each iteration, the machine learning component
predicts the objective function improvement that is expected to be obtained after the employment
of each of the competing algorithms. The destroy/repair couple is consequently drawn accord-
ing to the expected improvement proportions. Worsening solutions are also considered and drawn
with the same likelihood of descent solutions. The proposed metaheuristic is denoted by Predic-
tive Large Neighborhood Search (PLNS) and is employed to efficiently solve dynamic e-ADARP
instances. Computational results are performed on 244 100-request dynamic instances from Uber
Technologies Inc. Results show that PLNS outperforms the state-of-the art in the context of on-line
operations.

Keywords: dial-a-ride problem, on-line optimization, autonomous vehicles, metaheuristics, ma-
chine learning, random forests

1



Bongiovanni, Kaspi, Cordeau, and Geroliminis 2

1. INTRODUCTION

In the Dial-a-Ride Problem (DARP), minimum cost routes and schedules are defined for a
fleet of vehicles exiting known depots and serving a set of customers with given pickup and dropoff
locations ([14]). The optimization can take into consideration multiple criteria and can include
multiple type of users and destination depots (e.g. [31],[9]). Typical operational constraints include
vehicle capacity, maximum route duration, and maximum user ride time constraints. In addition,
service start times at pickup and dropoff locations are usually limited by time-window constraints.
A recent work has extended the standard DARP by considering the use of electric autonomous
vehicles (e-ADARP) ([7]).

The DARP literature can be divided into two main streams, namely static and dynamic
DARP. In the first case, demand is fully known in advance, whereas, in the second case, demand
is revealed on-line. No information about future requests is typically assumed, although some
stochastic information (e.g. [1],[23]) and forecasts may be used (e.g. [16], [17])). Given the
inherent uncertainty on demand, transportation requests are allowed to be denied in the dynamic
DARP. Hence, solution quality is primarily measured by means of the total number of served
requests and secondly by operational costs.

The use of electric autonomous vehicles (e-AVs) poses new challenges that need to be
tackled on-line. That is, the planning process needs to continuously re-optimize the vehicle battery
levels, decisions regarding detours to charging stations, recharging times, and destination depots
together with the classic dial-a-ride features. The added complexity induced by the use of e-AVs
for dynamic dial-a-ride systems calls for the design of new efficient heuristics that can be employed
for real-time decision making.

Recent advance in artificial intelligence has fostered new research directions at the intersec-
tion between Machine Learning (ML) and optimization. While optimization methods have been
often employed into ML algorithms (e.g. [4], [22], [5]), the use of ML into optimization algo-
rithms is new and has been focusing on the following tasks: (1) ML as an approximation tool to
tackle time-consuming tasks in discrete optimization algorithms ([6], [25], [28]), (2) ML to heuris-
tically solve discrete optimization problems ([26], [3],[36]) (3) ML to choose among a number
of competing algorithms to solve hard optimization problems ([29], [37], [19]). In this work, the
machine learning component is employed in the context of a metaheuristic approach to predict the
expected performance of each competing algorithms at each iteration of a LNS approach. Perfor-
mance is measured by the expected objective function improvement. At each iteration, algorithms
are drawn proportionally to their expected improvement. That is, the ML regression task replaces
the “roulette wheel” mechanism proposed in the Adaptive Large Neighborhood Search (ALNS)
([34]) and is based on a statistics collected from a large dataset of examples of moves from all of
the competing LNS algorithms on several instances and routing solutions.

In summary, this work proposes a Predictive Large Neighborhood Search (PLNS) heuristic
to solve the dynamic electric Autonomous Dial-a-Ride Problem (e-ADARP). The scope of the
paper is to provide the following contributions: (1) an efficient metaheuristic to deal with on-line
vehicle routing problems, (2) show that the use of machine-learning within optimization algorithms
leads to positive results and fosters new research directions, (3) compare the proposed approach
against the state of the art (i.e. ALNS), (4) train and test the PLNS with a large dataset obtained by
simulations from real transportation data from Uber Technologies Inc.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 3

2. SOLUTION APPROACH

Heuristic two-phase approaches have been widely applied to a variety of tightly-constrained
vehicle routing problems (e.g. [2], [35], [32]). The first phase typically attempts to assign re-
quests to vehicles through a polynomial-time insertion heuristic ([24]). The assignment needs to
be feasible and thus respect all of the constraints imposed by the problem. In the e-ADARP, such
constraints correspond to time-window, capacity, maximum ride time, and battery constraints.

The second phase is designed to re-optimize previous decisions through sequential inter-
and intra-vehicle request exchanges and charging plan modifications. The route adjustments are
performed by sequentially destroying and repairing part of the vehicle plans, thus following a LNS
approach ([33]). The destruction degree is typically drawn from a uniform distribution supported
on a bounded interval. If the bound is too restrictive, the incumbent solution may be modified
only marginally. As a result, the search may have difficulties in moving towards promising neigh-
borhoods and get trapped into a local minimum. One way of dealing with this drawback is to
loosen the interval bound, allowing the algorithm to rearrange a higher percentage of the vehicle
requests. Nevertheless, higher destruction degrees typically have a negative effect on computa-
tional time ([21],[27],[34]). Another methodology which is typically employed to try and escape
local minima explores non-improving solutions (e.g. [13],[15]). Worsening solutions may be gen-
erally explored by employing an acceptance criterion based on Simulated Annealing (SA) ([30]).
If non-improving solutions are accepted, the solution is expected to iteratively recover towards
promising areas of the search space. Such recovery cannot be guaranteed as it highly depends on
the type of operator and destruction degree being employed. Thus there is a maximal number of
successive non-improving steps allowed, which may determine an early exit from the search. The
state of the art (i.e. ALNS) selects operators according to a score function providing a measure for
their success on previous iterations (e.g. [18], [34]). The score function is initialized according to a
“roulette wheel” mechanism and may need several iterations before being able to choose between
the competing operators. Indeed, ALNS is typically employed for large static problems, which are
not as tightly bound by computational time as for dynamic settings.

In this work, we propose another LNS extension, i.e. the PLNS,in which the expected
percentage improvement for each competing algorithm is predicted at any given iteration. The
operator to be used is then drawn according to the relative improvement ratios. The advantage
of the method is that the scores do not need to be adjusted through several iterations, as in the
ALNS. Instead, they are spontaneously provided for each sub-problem during the LNS search.
The following sections introduce the machine-learning approximation, present the PLNS, and the
construction of the training dataset in more detail.

3. MACHINE-LEARNING APPROXIMATION

Consider a problem instance i and an incumbent solution s characterized by aggregated
features (i.e. input variables) {X1, . . . , Xd}. Such features may correspond to scalar, boolean,
or more generally categorical values (e.g. number of requests in the vehicle future plans, the
presence of a new upcoming request, current vehicle tasks etc.). The d-dimensional vector xi =
{xi1, . . . , xid} denotes one realization of such features and defines a datapoint. Tuples (xi, yi), with
i = {1, . . . , N}, are a collection of examples of problems for which the output yi (e.g. the most
frequent percentage improvement) is known, i.e. the labeled set. Sample an arbitrary large subset
of examples within the labeled set, called the training set with size Ntrain. A supervised learning



Bongiovanni, Kaspi, Cordeau, and Geroliminis 4

approach aims at estimating a function ξ : X → Y which best maps the input space to the output
space through the examples provided by the training dataset. If Y ∈ R, ξ is a regressor (e.g. it
estimates the most frequent percentage improvement). The goal of the regression problem is to
minimize a loss function L measuring the discrepancy between the predicted and known output
values from the test dataset, with size Ntest. The test dataset is the examples that remain from the
labeled set that are not in the training set. There exists multiple measures providing the expected
prediction error. For a regression problem, model accuracy can be estimated by employing mea-
sures such as: (1) Mean absolute error (MAE, also known as L-1 loss), (2) Root mean square error
(RMSE, the root of the MSE or L-2 loss), (3) Coefficient of determination (R2). The three mea-
sures are summarized here below:

MAE =
1

Ntest

Ntest∑
i=1

|yi − yi
p|

RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(yi − yip)2

R2 = 1−

Ntest∑
i=1

(yi − yi
p)2

Ntest∑
i=1

(yi − ȳi)2

Where yi denotes the observed data, yip the predicted data, and ȳi the mean of the observed
data. For a review exploring the meaning and differences between these measures for machine
larning applications, the reader is refferd to the on-line website in [20].

In this work, the prediction problem is tackled through ensemble learning, namely Random
Forest (RF) regression ([11]). The goal of ensemble learning is to combine simple and fast learners
to obtain better performance. In the case of RF, the weak learners are Classification And Regres-
sion Trees (CART) ([12]). CART recursively partition the input space through a series of binary
splits which are chosen through a mathematical model which maximizes a goodness of split func-
tion. The depth of the tree is typically controlled by a parameter which provides an upper bound
on the maximal number of splits and, consequently, sub-regions. For a regression problem, the
value of each sub-region is decided by computing the average of the samples in the sub-region (the
“average vote”). The predicted value for a new input point is then obtained by passing the point
through the tree until a final node (or sub-region) is reached. In order to increase the accuracy of
the prediction, multiple decision trees are typically combined through a technique called bagging,
which essentially generates multiple models based on bootstrap samples of the input space ([10]).
Random forests attempt to further increase the accuracy of the predicted models and de-correlate
trees by choosing a subset of the feature space at every split in the tree. The final prediction is the
aggregation of the predictions of all models. For a regression task, the aggregation corresponds to
the average of the predicted values. Random forests have a similar performance compared to other
popular machine-learning methodologies, such as support vector machines, while having numer-
ous practical advantages. What makes RF most suitable for this work is its ability to automatically
select features, provide a variable importance measure, handle outliers and very big datasets.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 5

4. PREDICTIVE LARGE NEIGHBORHOOD SEARCH

This section describes the predictive LNS approach proposed for the e-ADARP, i.e. the
PLNS. The PLNS differs in multiple ways with respect to the ALNS extension proposed in [34]:
(1) The PLNS concurrently selects destroy/repair operators to be employed at any new iteration
during the search, (2) The selection of the operators are guided by a machine-learning approach,
(3) The prediction scheme selects the operators in consideration of the expected objective improve-
ment on the problem instance and routing solution at the current LNS iteration, (4) The repair
operators use the exact scheduling and battery management algorithm proposed in [8].

The destroy and repair operators proposed in this work closely follow the ones proposed
in [34]. Namely, this work adopts all of their destroy (i.e. shaw, worst, and random) and re-
pair (i.e. basic greedy, regret-2, and regret-3) heuristics. Consider an instance i ∈ {instances},
characterized by planned transportation requests and a new transportation requests j. The current
routing solution s ∈ {solutions} has total operational cost f(s), which includes a high penalty for
the unassigned request j. If more than one new transportation request appear at the same time,
the requests are treated independently and in the order of arrival. The attempt of the PLNS is to
insert j, while reducing the total operational cost f(s). In order to achieve this goal, the PLNS
destroys and repairs the current routing solution over multiple iterations i ∈ {1, . . . , k}. At each
iteration, the search uses a specific destroy operator d(i) and repair operator r(i). Destroy-Repair
couples (d(i), r(i)) are selected according to the process explained next. First, the destroy level
qi is drawn from a uniform bounded interval. The destroy level, instance, and routing solution
information forms the input data xi = {xi1, . . . , xid} which is fed to the destroy-repair regression
models ξ(dl,rn), with l, n ∈ {1, . . . ,m}. The regression models return the expected performance
of each destroy/repair couple at the current iteration i, i.e. the most frequent objective improve-
ment y(dl, rn)i. Successively, the predicted performances are normalized returning the proportion
of improvement per destroy/repair couple p(y(dl, rn)i) at iteration i. Note that negative improve-
ments are also possible and are drawn with equal probability of positive improvements, given their
relatively low magnitude. Successively, the destroy-repair couple to be employed at the current
LNS iteration, i.e. (d(i), r(i)), is drawn according to the predicted proportions p(y(dl, rn)i). The
destroy-repair couple (d(i), r(i)) selects qi requests to be removed from s and update the set of
pending requests to qi ∪ {j}. Define s′ as the new solution obtained by destroying the pending
requests from s through d(i) and repairing them through r(i). If s′ is feasible, contains all of the
removed requests, including the new request j, and reduces total cost f(s), the incumbent solution
s is updated. The acceptance criterion, based on SA, allows the search to explore non-improving
solutions s′ . Note that the search is prematurely terminated if the maximal number of sequential
non-improving iterations is exceeded and if a maximum time limit is exceeded (e.g. 5 seconds).
Algorithm 1 provides a pseudo-code for the proposed PLNS framework.

6. DATASET, LABELING AND FEATURE SELECTION

This section presents the ground truth data generation (the creation of examples, also called
the labeling), and the feature selection used for the PLNS. The prediction scheme for the dynamic
e-ADARP uses of a large dataset containing tuples (xi, yi) to determine the percentage improve-
ment to be expected by the use of destroy/repair operators (dl, rn), with l, n ∈ {1, . . . ,m}, at
iteration i. While in most machine learning applications the output values are known, in the dy-
namic e-ADARP the labels have to be produced through extensive optimization-based simulations.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 6

Algorithm 1: PLNS heuristic
Input: instance i ∈ {instances}, current solution s ∈ {solutions}, j ∈ {newrequests}, number of LNS iterations k, m destroy

models dl, m repair models rn, regression models ξ(dl,rn) for l, n ∈ {1, . . . ,m}, LNS exit rule exit
Output: sbest

1 Initialize: sbest = s;
2 Initialize: scurrent = s;
3 Initialize: check = true;
4 Initialize: penalty = Inf;
5 for i← 1:k do
6 Draw: qi ∈ N;
7 Compute: xi from i, scurrent, and qi;
8 Predict: ξ(dl,rn) : xi → y(dl, rn)i for l, n ∈ {1, . . . ,m};
9 Compute: p(y(dl, rn)i) =

y(dl,rn)i
m∑
l=1

m∑
n=1

y(dl,rn)i

[%];

10 Draw: p(y(dl, rn)i)→ (d(i), r(i));
11 Compute: s

′
= d(i)(r(i)(qi ∪ {j}));

12 if s
′
is infeasible then

13 check = false;

14 else
15 check = true;

16 if check = true then
17 if f(s

′
) < f(sbest) + penalty then

18 sbest = s
′

19 scurrent = s
′

20 j = ∅
21 penalty = 0;

22 else if accept(s
′
, scurrent) is true then

23 scurrent = s
′
;

24 if exit = true then
25 break;

Several instances are simulated through an event-based simulation framework. The simu-
lation includes vehicle events (such as arrivals, departures, recharges) and requests events (such as
arrivals, pickups, and dropoffs). Insertions are triggered any time a request arrival event appears.
The re-optimization through PLNS is triggered any time an upcoming request j cannot be directly
inserted into the vehicle plans.

Consider an initial sub-problem i, characterized by routing solution scurrent and cost f(scurrent).
The initial sub-problem may be adjusted by applying any of the available destroy-repair operators
(dl, rn) with dl ∈ {1 : Worst, 2 : Random, 3 : Shaw} and rn ∈ {1 : Greedy, 2 : Regret2, 3 :
Regret3}. Since the destruction level qi is randomly drawn from a uniform bounded interval, each
destroy-repair operator (dl, rn) is applied to scurrent for N times. Ideally, N should be large enough
in the attempt to de-randomize the performance of each operator. For each trial and every operator
(dl, rn), we retrieve the percentage improvement on the objective of the current solution from the
application of operators (dl, rn). Note that the percentage improvement may be negative and that
solutions that increase the objective function too much are discarded by a SA approach. After the
N trials, we determine distributions on the performance of each destroy/repair couple (dl, rn). In
particular, we retrieve the mode of the distributions (i.e. the most frequent objective improvent)
and the number of samples in the distribution. If a distribution contains less than p% samples
(i.e. (1− p%) trials with operators (dl, rn) were discarded by the SA approach), the distribution is
discarded from the training dataset. Note that if no destroy/repair operator is able to produce dis-



Bongiovanni, Kaspi, Cordeau, and Geroliminis 7

TABLE 1 Features description
Requests in vehicle plans New request
Problem size Is there a new request to be inserted? (binary)
Radius (average/std distance between requests and the centroid) Is the new demand in the convex hull of the requests in the plan? (binary)
Area covered by the requests Average distance of the new request from the centroid
Percentage of drop-offs in the convex hull from the pickups Average distance of the drop-off of the new request from all nodes
Percentage of pickups in the convex hull of the drop-offs
Vehicles Vehicle Routes
Average/std distance of vehicles from the centroid Time elapsed from the beginning of the planning horizon
Average distance between vehicles Percentage of non-utilised vehicles
Average/std distance between vehicles and the pickup of the new request Percentage of currently empty vehicles
Percentage of vehicles in the convex hull of pickups/dropoffs Average/std current and future vehicle loads
LNS iterations Average/std number of requests in the vehicle routes
SA temperature Average/std vehicle travel times and requests excess times
Percentage cost difference from the initial/last incumbent solution Average/std vehicle batteries
Neighborhood size (destroy level) Average/std travel times from vehicle plans and unique travel times (cost matrix)
Percentage of non-improving iterations Average/std vehicle tour lengths and number of edges

tribution of at least p% samples, then the search is exited. The modes of each destroy/repair couple
(dl, rn) are successively retrieved and normalized. The best destroy/repair couple (d(i), r(i)) for
labeling sub-problem i is finally drawn from the resulting mode proportions.
Throughout the simulations, we characterize instances i by several aggregated features which re-
late to: (1) The spatial distribution of requests in the vehicle plans, (2) The spatial distribution of
vehicles and their routes; (3) Information on the upcoming request, (4) Information on current and
past LNS iterations. Overall, we determine 40 features, summarized in Table 1.

7. NUMERICAL EXPERIMENTS

This work employs real data from Uber ride-shares in San Francisco, obtained by extracting
pickup/dropoff locations and times from published GPS logs.1. The dataset results in 24,400 Uber
trips in a one-week time interval. For the sake of our tests, we extract 100-request scenarios. Note
that larger problems are not necessarily more difficult to solve, as complexity depends on the size
of the encountered sub-problems, which in turn depend on the demand distribution and arrival rate,
rather than the size of the scenarios. We construct a 15-minutes time-window around the request
pickup/dropoff times and assume booking times happen at the beginning of the time-windows. We
consider a fixed fleet size of 10 vehicles, with a maximal capacity of 15 passengers and a nominal
battery capacity of 14.85 kWh. The fleet size has been chosen such that 65% of the total demand
can be served by a greedy insertion algorithm, on average.

The procedure described in section 6 was applied to each one of the 244 100-request in-
stances from the Uber dataset. At each LNS iteration, we employed each of the 9 LNS algorithms
200 times and discretized the destroy degree into four bounded distributions, up to 55%. That is,
ech LNS algorithm tries to destroy up to 15%, 25%,35%, and 55% of the vehicle routes, 50 times
each. Finally, we gathered information for all distributions composed of at least 50 samples (or
25% of 200 trials). The simulations resulted in a total of 20,449 labeled datapoints. All of the
results were derived from a commercial 2.5 GHz quad-core computer with 16 GB of RAM and are
implemented in the julia computing language.

The first question that is to be asked in the context of an online algorithm is whether the
re-optimization policy actually increases the number of accepted requests. In fact, given that we
do not estimate future requests arrivals, optimizing vehicle routes at any given time may decrease
chances to accept requests later on. In Figure 1(a), we provide the difference in terms of the

1Available at https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata



Bongiovanni, Kaspi, Cordeau, and Geroliminis 8

FIGURE 1 Training dataset and simple insertion: (a) Difference in number of accepted re-
quests, (b) Average CPU time at each iteration of the training process

number of accepted requests between a simple insertion strategy and the training dataset. As it
can be noted, re-optimizing routes may sensibly increase the number of accepted requests and
by up to 25%. In a very few cases, the re-optimization phase may not lead to a higher number of
accepted requests and may instead slightly decrease the solution quality (by less than 5%). Clearly,
given its computational burden, the extensive methodology used to produce the training dataset is
not suitable for real-time decision processes, as shown in Figure 1(b). For this reason, the re-
optimization policy is learnt through a machine-learning approach and efficiently re-applied to the
problem instances.

7.1 ML results

A random forest regressor is trained on 20,242 datapoints by the use of the python Scik-
itLearn library. The number of labeled datapoints per class (i.e. the most likely percentage im-
provement per LNS algorithm) is provided in Table 2. Note that the dataset is unbalanced, given
that in training set each next move is drawn in consideration of the estimated improvement distri-
butions. As customary in the ML literature, 75% of the labeled set is selected for training, and the
remaining 25% for testing. The split is performed randomly. On the training dataset, we optimize
the hyperparameters using grid search and k-fold cross-validation. The optimized hyperparameters
include the number of estimators, maximal depth, maximal number of features, and minimal num-
ber of samples per split in the RF. The optimal parameters are chosen from the results obtained on
5 folds and by considering the L-2 loss. Table 3 shows performance measures obtained for each of
the 9 trained regression models by applying them on the test dataset. As it can be noticed from the
MAE and RMSE, the models predict the improvements that should be obtained by the application
of any of the 9 algorithms within a 2% error, on average. Relative to the mean of the observed data
(rRMSE), this translates to an error of less than 19%. All of the proposed models are characterized
by a coefficient of determination (R2) higher than 99%, showing that the regression models can
replicate the outcomes with high confidence.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 9

TABLE 2 Number of datapoints per class
Class Number of datapoints
1 1,266
2 2,497
3 2,652
4 2,033
5 2,971
6 3,217
7 1,110
8 2,192
9 2,304

TABLE 3 Performance measures obtained for the RF regressor on the test dataset
Class MAE RMSE R2 rRMSE
1 1.42 2.13 99.71% 9.20%
2 1.15 1.75 99.65% 7.80%
3 1.12 1.66 99.70% 10.83%
4 1.95 2.64 99.28% 16.83%
5 1.38 2.04 99.46% 16.37%
6 1.39 2.07 99.41% 18.25%
7 2.15 3.27 99.10% 15.90%%
8 1.80 2.65 99.17% 18.94%
9 1.84 2.63 99.18% 18.88%

7.2 PLNS results

The trained models are re-applied on 30 out of the 60 100-request instances from the test
dataset and in the context of the PLNS described in section 4. The PLNS approach is compared to a
random selection algorithm and to ALNS, according to the score updating methodology proposed
Ropke and Pisinger (2006). All of the algorithms are tested 10 times on each scenario in the test
dataset. The maximal number of LNS iterations is set to 100 and the search is either exited when
the search cannot recover after 10 consecutive worsening iterations or when a maximal time limit
of 5 seconds is exceeded. The SA parameters, notably the initial temperature and the cooling
rate, as well as the score adjustments parameters for the ALNS, are set as in Ropke and Pisinger
(2006). However, we set the ALNS reaction factor r to 0.4 and update the operators scores every
5 iterations. That is, operators weights are updated more frequently and react faster to changes in
the effectiveness of the algorithms.

Figure 2 compares ALNS, the random algorithm, and PLNS in terms of the number of
accepted requests (i.e. our primary objective). As it can be noted, in most of the instances PLNS
outperforms the two other approaches, on average. In some cases, PLNS may clearly outperform
the other two algorithms and by more than 15-20%, e.g. problems 12, 20, 21, 24, 25. There are
only a few cases in which the three algorithms perform similarly, e.g. problems 13, 15, and 28.
There is only one case, i.e. problem 30, in which ALNS outperforms PLNS by only 5%. Finally,
PLNS is able to increase the number of accepted requests by up to about 25% with respect to a
simple insertion strategy.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 10

FIGURE 2 Distributions on the number of accepted requests on the test dataset

CONCLUSION

This work proposes a new extension to the family of large neighborhood search metaheuris-
tics for the dynamic electric autonomous dial-a-ride problem (PLNS). The proposed metaheuristic
employs a machine learning approach to predict the performance on the objective function of 9
destroy-repair couples for each iteration during the search. The training dataset is composed of
a large number of examples of LNS moves and their respective expected objective improvement.
We have trained 9 different models through a random forest regression approach. Results show
that the learnt models are capable of reproducing the observed data with high confidence. The
models have been re-employed on the test dataset in the context of a simulation-based optimiza-
tion approach. Results show that PLNS outperforms the state of the art (ALNS) in terms of the
number of accepted requests by making more informative neighoborhood moves. Current work
is focusing on extending computational results and extracting managerial insights from the new
optimization policy. Future work may include: (1) The adoption of a look-ahead policy to partially
guide the optimization algorithm by future demand arrivals, (2) The adoption of other classification
frameworks from machine learning literature.

ACKNOWLEDGMENTS

The authors would like to thank Dan Assouline, Tim Hillel, Gael Lederrey, and Nicholas
Molyneaux for the several brainstorming talks about machine learning and its applications in the
context of our proposed work. The authors would also like to thank George Adaimi for helping on
the setup for the HPC facilities at EPFL.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 11

REFERENCES

1. Albareda-Sambola, M., Fernández, E., Laporte, G., 2014. The dynamic multiperiod vehicle
routing problem with probabilistic information. Computers & Operations Research 48, 31–39.

2. Archetti, C., Fernández, E., Huerta-Muñoz, D.L., 2018. A two-phase solution algorithm for
the flexible periodic vehicle routing problem. Computers & Operations Research 99, 27–37.

3. Bengio, Y., Lodi, A., Prouvost, A., 2018. Machine learning for combinatorial optimization: a
methodological tour d’horizon. arXiv preprint arXiv:1811.06128 .

4. Bertsimas, D., Dunn, J., 2017. Optimal classification trees. Machine Learning 106, 1039–
1082.

5. Bertsimas, D., Shioda, R., 2007. Classification and regression via integer optimization. Oper-
ations Research 55, 252–271.

6. Bonami, P., Lodi, A., Zarpellon, G., 2018. Learning a classification of mixed-integer quadratic
programming problems, in: International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research, Springer. pp. 595–604.

7. Bongiovanni, C., Kaspi, M., Geroliminis, N., 2019. The electric autonomous dial-a-ride prob-
lem. Transportation Research Part B: Methodological 122, 436–456.

8. Bongiovanni, C., Kaspi, M., Geroliminis, N., 2020. An exact scheduling and battery manage-
ment algorithm for the electric autonomous dial-a-ride problem. Working paper.

9. Braekers, K., Caris, A., Janssens, G.K., 2014. Exact and meta-heuristics approach for a gen-
eral heterogeneous dial-a-ride problem with multi depots. Transportation Research Part B:
Methodological 67, 166–186.

10. Breiman, L., 1996. Bagging predictors. Machine learning 24, 123–140.
11. Breiman, L., 2001. Random forests. Machine learning 45, 5–32.
12. Breiman, L., 2017. Classification and regression trees. Routledge.
13. Cordeau, J.F., Laporte, G., 2003. A tabu search heuristic for the static multi-vehicle dial-a-ride

problem. Transportation Research Part B: Methodological 37(6), 579–594.
14. Cordeau, J.F., Laporte, G., 2007. The dial-a-ride probelm: models and algorithms. Annals of

Operations Research 153, 29–46.
15. Cordeau, J.F., Laporte, G., Mercier, A., 2001. A unified tabu search heuristic for vehicle

routing problems with time windows. Journal of the Operational research society 52, 928–
936.

16. Ferrucci, F., Bock, S., 2016. Pro-active real-time routing in applications with multiple request
patterns. European Journal of Operational Research 253, 356–371.

17. Ferrucci, F., Bock, S., Gendreau, M., 2013. A pro-active real-time control approach for dy-
namic vehicle routing problems dealing with the delivery of urgent goods. European Journal
of Operational Research 225, 130–141.

18. Goeke, D., Schneider, M., 2015. Routing a mixed fleet of electric and conventional vehicles.
European Journal of Operational Research 245, 81–99.

19. Gomes, C.P., Selman, B., 2001. Algorithm portfolios. Artificial Intelligence 126, 43–62.
20. Grover, P., 2018. 5 regression loss functions all machine learners should

know: Choosing the right loss function for fitting a model. URL:
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0.

21. Gschwind, T., Drexl, M., 2019. Adaptive large neighborhood search with a constant-time
feasibility test for the dial-a-ride problem. Transportation Science 53, 480–491.



Bongiovanni, Kaspi, Cordeau, and Geroliminis 12

22. Gunluk, O., Kalagnanam, J., Menickelly, M., Scheinberg, K., 2016. Optimal generalized
decision trees via integer programming. arXiv preprint arXiv:1612.03225 .

23. Ichoua, S., Gendreau, M., Potvin, J.Y., 2006. Exploiting knowledge about future demands for
real-time vehicle dispatching. Transportation Science 40(2), 211–225.

24. Jaw, J.J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H., 1986. A heuristic algorithm for the multi-
vehicle advance request dial-a-ride problem with time windows. Transportation Research Part
B: Methodological 20, 243–257.

25. Kruber, M., Lübbecke, M.E., Parmentier, A., 2017. Learning when to use a decomposition,
in: International Conference on AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, Springer. pp. 202–210.

26. Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., Lodi, A., 2019. Pre-
dicting tactical solutions to operational planning problems under imperfect information. arXiv
preprint arXiv:1901.07935 .

27. Li, B., Krushinsky, D., Van Woensel, T., Reijers, H.A., 2016. An adaptive large neighborhood
search heuristic for the share-a-ride problem. Computers & Operations Research 66, 170–180.

28. Lodi, A., Zarpellon, G., 2017. On learning and branching: a survey. Top 25, 207–236.
29. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M., 2013. Algorithm portfolios based

on cost-sensitive hierarchical clustering, in: Twenty-Third International Joint Conference on
Artificial Intelligence.

30. Nikolaev, A.G., Jacobson, S.H., 2010. Simulated annealing, in: Handbook of metaheuristics.
Springer, pp. 1–39.

31. Parragh, S.N., 2011. Introducing heterogeneous users and vehicles into models and algorithms
for the dial-a-ride problem. Transportation Research Part C: Emerging Technologies 19(5),
912–930.

32. Parragh, S.N., Doerner, K.F., Hartl, R.F., Gandibleux, X., 2009. A heuristic two-phase solution
approach for the multi-objective dial-a-ride problem. Networks: An International Journal 54,
227–242.

33. Pisinger, D., Ropke, S., 2010. Large neighborhood search, in: Handbook of metaheuristics.
Springer, pp. 399–419.

34. Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation science 40, 455–472.

35. Schilde, M., Doerner, K.F., Hartl, R.F., 2011. Metaheuristics for the dynamic stochastic dial-
a-ride problem with expected return transports. Computers & operations research 38, 1719–
1730.

36. Vinyals, O., Fortunato, M., Jaitly, N., 2015. Pointer networks, in: Advances in Neural Infor-
mation Processing Systems, pp. 2692–2700.

37. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2008. Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research 32, 565–606.


