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Abstract
Urban road networks play a key role in mobility amongst the critical infrastructure of city, which is a
strong time-variant system with uncertainty. In this paper, for the purpose of understanding the traffic
congestion propagation patterns, demand estimation and spatio-temporal clustering was performed
with a case study on the central area of Nanjing, China. Firstly, a four-hour time-dependent origin-
destination traffic demand is calibrated by utilizing the Adaptive Fine-tuning (AFT) algorithm, and
aiming at minimizing the error between microscopic simulated results by SUMO and real-world Radio
Frequency Identification (RFID) data. Then, spatio-temporal clustering was performed to illustrate the
dynamic feature on congestion propagation by implementing the spectral clustering approach. Results
demonstrate that the calibrated dynamic origin-destination matrix can illustrate a good match with
RFID data, and the proposed spectral clustering approach is fast and feasible for the partitioning of
urban road network.
Keywords: Demand estimation; spatio-temporal; spectral clustering; urban road network.

Introduction
Urban roadway systems play a vital role as the backbone and non-separable part of a city which
provides assess and mobility to people, goods, and services. Essentially, with the rapid urbanization
globally, the unbalance of demand and supply (i.e., road infrastructure), which in consequence creates
traffic congestion, is experienced by all residents in everyday commuting. Meanwhile, in recent years,
the fast development of Intelligent Transportation System (ITS), which is within the framework of
smart city, provides a series of ways to help alleviate the negative effects of traffic congestion. If we
consider Nanjing city, for instance, which is the second largest city in the southeast part of China,
recently it was made mandatory for all newly licensed vehicles to install RFID tags. The penetration
rate during the investigation period of this paper is approximately up to 40%. Although we can obtain
“big data” everyday, the limited installation of RFID readers still makes it difficult to obtain the overall
status of the urban road network. Therefore, it is not easy to analyze congestion propagation pattern
only with the available RFID data sets, and further methodological tools and developments are needed
for that purpose.

Traffic demand is immeasurable but can be estimated by various methods, with researchers having
started to use link flow to estimate origin-destination (OD) matrices since the 1970s. As one of the
most important parameters of traffic simulation models, traffic demand (i.e., OD matrix) is not easy to
be calibrated for large-scale networks. Existing methods in literature can be classified as follows: (1)
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bi-level programming models: traffic assignment models such as stochastic user equilibrium (SUE)
is generally chosen as the lower level problem, which can consider the impact of congestion on path
selection as well as the effect of the delay function; albeit, it has the inherent shortcoming on model
computational complexity (Maher et al., 2001); (2) statistical models: this type of models provide a
good pathway to combine the prior knowledge on OD matrix with current observations of traffic flow,
for instance, maximum likelihood models (Spiess, 1987) and Bayesian models (Li, 2005); however, they
are sensitive to the prior definition of OD matrices; (3) simultaneous perturbation stochastic
approximation (SPSA): SPSA and its variations have been applied extensively to such problems,
due to their ability of simultaneously calibrating demand and supply parameters; nevertheless, they
present a performance deterioration issue in terms of convergence, especially for large-scale networks
(Antoniou et al., 2015, Tympakianaki et al., 2015). In conclusion, traffic demand estimation is not a
new problem, but is still challenging when tackling a large-scale traffic system that has information of
sparse traffic flow observations.

The understanding of congestion propagation patterns is critical, especially regarding its spatio-
temporal relevance and transitivity (Yang and Wang, 2019), which is one of the most fundamental
issues for the development of dynamic control strategies. Generally speaking, there exist three main
types of studies focusing on this problem, which are: (1) simulation modeling: this type of models
can emulate the system evolution dynamics to different dimensions dependent on the model itself, such
as cellular transmission model, SIR (Susceptible, Infected, Recovered) model, car-following model and
microscopic traffic simulation. Meanwhile, the set of parameters in a simulation model is of need great
importance; (2) data-mining: it usually focuses on finding the causality among congestion, such as
causal congestion trees (CCTs), frequent congestion subtree discovery, and dynamic Bayesian networks
(DBN) (Nguyen et al., 2016). Although this type of methods can explain the causal relationship well,
they usually make some assumptions (e.g. the impact of congestion is spatially independent); this can
be suitable for local congestion propagation analysis, however, the isolation of continuous roads cannot
reveal complete spatial transitivity; (3) spatio-temporal clustering: clustering algorithms are com-
monly used in works related to community detection (Malliaros and Vazirgiannis, 2013), image segmen-
tation (Naik and Shah, 2014), sensor networks (Katiyar et al., 2010), and many others. The difficulties
of urban road networks clustering mainly rely on its dynamic and uncertainty features that call for
satisfactory resolution in both spatio-temporal dimensions. An initial segmenting/merging/boundary
adjustment mechanism to minimize the variance of link densities while maintaining the spatial compact-
ness of clusters was proposed by (Ji and Geroliminis, 2012). Later on, Saeedmanesh and Geroliminis
have utilized a symmetric non-negative matrix factorization (SNMF) to assign links to proper clusters
with high intra-similarity and low inter-similarity (Saeedmanesh and Geroliminis, 2016).

Essentially, a similarity function can be defined between traffic observations and significance test-
ing can be utilized to tackle this problem. Such an approach, uses hypothesis testing to determine
statistically significant clusters and perform the spatio-temporal clustering. In summary, for cases
with limited traffic count data, the combination of a simulation model and spatio-temporal clustering
could be of important value for practical cases. In the current paper, the adaptive fine tuning (AFT)
algorithm has been utilized for offline traffic demand estimation with the Traffic Control Interface
(TraCI) SUMO (Krajzewicz et al., 2002). A case study of the urban network of Nanjing, in China, was
investigated. Our results show good performance and quick convergence for a large-scale system. The
spectral clustering approach was employed for the spatio-temporal clustering, and simulation results
demonstrate its high efficiency for real-time clustering. Conclusions and future work are discussed at
the last part of the paper.
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Figure 1: Flowchart of demand estimation framework.

Methodological framework
Figure 1 presents the flowchart of the demand estimation framework used in this paper. The TraCI
API of the microscopic simulation model SUMO has been utilized to implemented the whole process.
The input and output parameters θ represent elements of OD matrices, with θ(0), θ(∗), and θ(k∗)
denoting the initial, best, and best values at k-th iteration, respectively. We denote with Etotal the
total error between the real and simulated data, and when the for difference between two consecutive
iterations ∆Etotal ≤ Φ is achieved, with Φ being a small positive number, the demand estimation
process will be terminated. Here, the error Etotal is defined as

Etotal =

√√√√ K∑
k

N∑
i

(x̂i(k)− x̄i(k)) (1)

where x̄i(k) is the RFID data from reader i and x̂i(k) is the SUMO simulated flows obtained by installed
detectors, for the same time interval k; N denotes the number of RFID readers (i.e., detectors) and K
the total discrete time-steps for all simulation horizon.

Briefly, the main concept of AFT algorithm is to use a universal approximator Ĵ(θ, x) to obtain a
modeling of the non-linear mapping Ĵ(θ, x) ≡ J(θ, x) between the free parameters and system output
J ; then an online adaptive/learning mechanism is employed to train the approximator with the iterative
collected date set. At each iteration k, several random candidate perturbations are created for θ(k),
while the best perturbation is selected based on the approximator Ĵ ; these correspond to the new
tunable parameter values θk+1 for the net time-step k + 1 (entries of OD matrices in our case). It
should be noted that AFT constitutes a generalization of SPSA algorithm, aiming at tuning system
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parameters through iterations and learning of nonlinear system dynamics. The interested reader is
referred to the literature (Kosmatopoulos et al., 2007; Kosmatopoulos and Kouvelas, 2009; Kouvelas
et al., 2011(a); Kouvelas, 2011; Kouvelas et al., 2011(b)) for a detailed algorithmic description of AFT
methodology.

Furthermore, for the spatio-temporal clustering, the spectral clustering approach is adopted in
this paper to obtain a high inter-cluster and low intra-cluster similarity. This method is rather com-
putationally efficient, especially if the affinity matrix is sparse. Spectral clustering uses information
from the eigenvalues (spectrum) of special matrices built from the graph or the data set. For a graph
G(V,E), V and E denote the sets of vertices and links, respectively. In order to have a group of
spatially connected links, the similarity function w(i, j) between link i and link j is defined as follows

w(i, j) =

{
exp(−(di − dj)2), r(i, j) = 1

0, r(i, j) > 1
(2)

where we use the occupancy d of each link for expressing the similarity function. Distance r(i, j) is
calculated based on the adjacent matrix of graph G(V,E), and i, j denote any couple of connected
links; when they are adjacent r(i, j) = 1, and otherwise r(i, j) > 1 denotes their distance. The general
steps to conduct the process of spectral clustering are the following:

(1) Construct the degree matrix D, and similarity matrix W .

(2) Compute the Laplacian graph L = D −W .

(3) The normalized Laplacian is given by D−1/2LD−1/2.

(4) Compute the first k eigenvectors v1, . . . , vk of L.

(5) Let V ∈ Rn×k be the matrix containing the vectors v1, ..., vk as column-wise.

(6) For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th row of V .

(7) Cluster the points (yi)i=1,...,n in Rk with k-means algorithm into clusters C1, ..., Ck.

More details on this approach can be found in Von Luxburg, 2007.

Case study and simulation results
The investigation area of this case study is within the highway boundaries colored in yellow in Figure 2,
where 41 RFID readers data are available. This part is the most busy area in Nanjing city, which is the
second largest city in southeast China. The investigation period is 6:00am to 10:00am on a working
day; induction loop detectors were installed at the same locations with RFID readers in our microscopic
simulation model in SUMO. The interval for exporting simulation data is set to 5 minutes, which is
equal to the RFID data gathering frequency.

A 4-hour time-dependent demand estimation procedure was initially applied to the study network.
For large networks with high dimensions, the number of links with available real-world data is usually
much less than the number of OD pairs, which means that accurate solution of OD matrix cannot be
obtained as the problem is under-determined. In Table 1, we report the total error values for the 4-
hours dynamic demand, which show the performance performance of our estimation. Then, in Figure 3
we present a comparison of the error rates for individual detectors, which is defined as

ei =

∣∣∣∣ x̂i − x̄ix̄i

∣∣∣∣ · 100% (3)
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Figure 2: Investing area and positions of RFID readers.

Table 1: Error value of dynamic demand estimation by AFT.

OD Time Period Total Error

od1 6:00-7:00 990.22
od2 7:00-8:00 2586.29
od3 8:00-9:00 3009.48
od4 9:00-10:00 2808.97

What we observe from the 4-hours simulation results with the dynamic demand, is that increasing
the aggregation time interval will lead to significant increase of the accuracy of results. As shown
in Figure 3, for each case with aggregation time of 15 min, approximately 80% of links demonstrate
error rate smaller than 20%. This is mainly due to the fact that averaging can eliminate the influence
of volatility in simulation. Furthermore, the comparison between simulation and RFID data for some
typical detectors are shown in Figure 4, in which 15 min was chosen as aggregation time. From Figure 4,
it can be seen that simulation results of flow variables (veh/h) can present a satisfactory matching
with RFID data, despite some few outliers. Note that these outliers could be readily eliminated using
some sliding average method. The average error values of these three detectors during the 4 hours of
simulation are presented in Table 2.

For the part of clustering, we built 93×93 adjacency matrix and similarity matrix; they are both
sparse matrices. In Figure 5, some results of spatio-temporal clustering are presented, in which Fig-
ure 5(a)-(d), 5(e)-(h), 5(i)-(l), and 5(m)-(p), are averages between 6:15am-6:30am, 7:15am-7:30am,
8:15am-8:30am, and 9:15am-9:30am, respectively. Results with different number of clusters 3, 4, 5,
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Figure 3: Proportion of detectors errors rate with different aggregation time.
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Figure 4: Comparison between simulation and RFID data with aggregation time 15 min.
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Table 2: Average error value during 4 hours time horizon.

6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00

detector 1 -3.56% 9.16% -10.04% -1.83%
detector 11 -0.49% 0.78% -3.07% 11.57%
detector 16 18.22% 5.12% -2.80% 0.20%

and 6, respectively, are demonstrated. In order to compare the quality of the partitioning, we use the
total variance of the clusters, which can be expressed as

NSk =
NSk(A,A)

NSk(A,B)
=

2Var(A)

Var(A) + Var(B) + (uA − uB)2
(4)

where A and B are neighbouring clusters, Var(·) is the variance of each cluster, and u denotes the
observation index (e.g., occupancy has been used here). Then the average NS values for each time
interval and different number of cluster are compared as shown in Table 3. When there is no congestion
in the network (e.g. 6:15am-6:30am), results with 3 clusters present the minimum variance, while for
some cases with congestion (e.g. 8:15am-8:30am) the 5 clusters have the best result. From these results,
it can be reflected that traffic congestion improves the heterogeneity of the road network.

For a clearer understanding of the congestion propagation process, we also calculate the statistical
results of the partitioning that present the best average NS (Table 4). Combined with Figure 5, a clear
view of congestion propagation from the blue cluster in 5(f) to a larger area, the red cluster in 5(k),
and then congestion shows a degrading trend as the red cluster in 5(o). During the morning peak time,
namely 8:15am to 8:30am, the number of links in the red cluster is the largest.

Conclusions and future work
In this paper, we have discussed the demand estimation and spatio-temporal clustering for large-scale
urban road networks. For the former part, an iterative framework has been implemented with TraCI
API in SUMO, and AFT algorithm has been utilized for determining the best OD dynamic matrices.
Results of this framework show good matching with real-world RFID data collected from the network,
and higher aggregation intervals illustrate better results. For the latter part, the spectral clustering
approach has been chosen due to its good performance when dealing with sparse similarity matrices.
The presented results have demonstrated that spectral clustering is a feasible and efficient pathway
for investigating urban road networks spatio-temporal characteristics. Combined with statistical data
for different number of clusters, one can study congestion patterns, i.e. generation, propagation, and
degradation in a large city-wide context.

In the future, we will focus on spatio-temporal clustering when dealing with bi-directional flows.
Furthermore, signal control strategies will be studied for the prevention of congestion propagation.

Table 3: Average NS value of different cluster.

Number of Clusters 2 3 4 5 6

6:15-6:30 0.999 0.830 0.971 0.997 0.924
7:15-7:30 0.990 0.829 0.806 0.812 0.870
8:15-8:30 0.990 0.957 0.945 0.853 0.941
9:15-9:30 0.975 0.966 0.994 0.958 1.137
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(a) (6:15-6:30)-3 cluster (b) (6:15-6:30)-4 cluster (c) (6:15-6:30)-5 cluster (d) (6:15-6:30)-6 cluster

(e) (7:15-7:30)-3 cluster (f) (7:15-7:30)-4 cluster (g) (7:15-7:30)-5 cluster (h) (7:15-7:30)-6 cluster

(i) (8:15-8:30)-3 cluster (j) (8:15-8:30)-4 cluster (k) (8:15-8:30)-5 cluster (l) (8:15-8:30)-6 cluster

(m) (9:15-9:30)-3 cluster (n) (9:15-9:30)-4 cluster (o) (9:15-9:30)-5 cluster (p) (9:15-9:30)-6 cluster

Figure 5: Results of spatio-temporal clustering
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cluster red blue green

Average occupancy 0.156 0.213 0.154
Variance 0.020 0.036 0.016

Number of links 32 26 35
(a) 3 clusters during 6:15am-6:30am (Figure 5(a))

cluster red blue green purple

Average occupancy 0.349 0.466 0.207 0.270
Variance 0.086 0.107 0.026 0.046

Number of links 22 23 32 16
(b) 4 clusters during 7:15am-7:30am (Figure 5(f))

cluster red blue green purple yellow

Average occupancy 0.429 0.293 0.288 0.273 0.336
Variance 0.210 0.078 0.062 0.009 0.029

Number of links 58 10 13 4 8
(c) 5 clusters during 8:15am-8:30am (Figure 5(k))

cluster red blue green purple yellow

Average occupancy 0.462 0.293 0.171 0.316 0.264
Variance 0.138 0.052 0.037 0.048 0.133
Number of links 45 22 14 9 3

(d) 5 clusters during 9:15am-9:30am (Figure 5(o))

Table 4: Statistical results of spatio-temporal clustering.
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