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SHORT SUMMARY 
 
 
In the era of big data, new transportation-related concepts and methodologies need to be proposed for 
understanding how congestion propagates. pNEUMA, a unique dataset that was acquired during a first-
of-its-kind experiment with a swarm of drones over a dense city center, has uncovered new opportunities 
for revisiting and evaluating existing concepts but also for new ways to describe significant traffic related 
phenomena. This dataset is part of an open science initiative shared to the research community and 
consists of more than half million detailed trajectories of almost every vehicle that was present in the 
study area. The aim of this paper is to provide a first methodological approach on how to extract 
information regarding shockwaves. First, we identify the critical start and stop points for every vehicle 
and using two different approaches (a rule-based and an unsupervised clustering technique) shockwaves 
are identified for multilane arterials in space and time. It is seen that the rule-based approach is based on 
shockwaves characteristics according to traffic flow theory and can successfully identify shockwaves and 
spillbacks when the location of traffic signals is known, while an unsupervised clustering technique is 
used to identify stop-and-go conditions. Finally, the different characteristics per lane and per shockwave 
are calculated and compared. 
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1. INTRODUCTION 
 
Shockwave analysis has been extensively used in traffic flow analysis since they were first introduced 
by (Lighthill and Whitham, 1955) and (Richards, 1956). Most of the studies until now focus on 
shockwaves’ characteristics to study different measures, such as delays, using microscopic traffic 
simulation software (Dion et al., 2004). In (Cho and Tseng, 2007), authors use the stopped time of 
vehicles to detect shockwaves and evaluate their methodology utilizing simulated data. In (Izadpanah 
et al., 2009) authors use an iterative two-phase piecewise regression to identify the “inflection points” 
of shockwaves and then a data filtering and linear-clustering algorithm to detect shockwaves, which 
was the main challenge. Then, their methodology was tested using both simulated and real data from 
the NGSIM dataset (NGSIM, 2006). Similar methodologies by identifying the “critical points” and 
then evaluated using both simulated data and real data from the NGSIM dataset is utilized in other 
studies, like (Wang et al., 2019) who combined shockwave analysis with Bayesian Networks to 
estimate traffic parameters at signalized intersections or (Cheng et al., 2010) to detect signal timing 
and estimate queue length. One of the limitations of the latest study is the identification of stop-and-
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go conditions. In (Elfar et al., 2018) shockwaves were analyzed in an assumed connected or partially 
connected environment using NGSIM data. Other previous works emphasize on the significance on 
shockwave analysis regarding travel times and cause of traffic delays (Ramezani and Geroliminis, 
2015; Yildirimoglu and Geroliminis, 2013). One of the first studies that focused on congested arterial 
networks using the shockwave profile model (SPM) is (Wu and Liu, 2011). While their methodology 
was replicated using data from a field test on an arterial corridor, authors state that queuing dynamics 
should be further investigated using better data, such as from video recordings. Another limitation in 
studying shockwaves has been reported in (Li et al., 2017), where authors estimate dynamic traffic 
shockwave speeds focusing in a connected vehicle environment using high temporal and spatial 
resolution data, concluding that their methodology should be also extended to multi-lane scenaria. As 
increased automation is expected to prevent shockwave formation and propagation of congestion, 
new mechanisms should be developed to better understand how shockwaves move through traffic 
(Talebpour and Mahmassani, 2016). 
 
In October 2018, a large scale experiment, nicknamed pNEUMA, was conducted to record traffic 
streams over an urban setting using drones and to provide significant insight on how their unique 
characteristics can overcome existing limitations in traffic monitoring and recording traffic streams 
(Barmpounakis and Geroliminis, 2020). A swarm of drones was flying over the congested city of 
Athens, Greece and produced a unique dataset of over half a million trajectories (Figure 1). This 
massive dataset contains trajectories of every vehicle that was present in the study area, calibrated in 
the WGS-84 system, every 0.04 seconds, as this is the maximum frequency allowed by the video’s 
frame rate. The advantages of extracting trajectories from drone videos and their potential in 
shockwave analysis have been described in (Khan et al., 2018), although authors do not describe how 
this methodology performs in such data. 
 

 
Figure 1: The study area of pNEUMA experiment 

 
The aim of this study is to provide a first methodological approach on how such data as the pNEUMA 
dataset, can be utilized to conduct shockwave information from this new kind of data that is available 
and set the benchmark for possible future approaches. 
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2. METHODOLOGY 
 
2.1. Data Collection 
More details on the design of the experiment can be found in (Barmpounakis and Geroliminis, 2020). 
For the specific study, the sample dataset that can be found in https://open-traffic.epfl.ch is used. The 
sample dataset was collected by one drone during 10:00-10:30 from the intersection of the Alexandras 
and 28th Oktovriou avenue (Figure 2). This 3-lane arterial includes three intersections and the 
positions of the three traffic signals are at 110m, 260m and 350m starting from upstream point (0,0) 
as indicated in the figure. It includes 2478 trajectories from cars, taxis, motorcycles, buses, heavy and 
medium vehicles. However, since motorcycles follow chaotic trajectories that would infer noise in 
our analyses, they are not taken into account for the current study. 
 

 
Figure 2: The study area is a 3-lane arterial including three signalized intersections 

 
2.2. Identification of critical points 
The identification of the start and stop points of the vehicles is the first step to analyze shockwaves. 
It is assumed that a vehicle travelling at time 𝑖 − 1 at a higher speed than a critical value parameter 
and at time 𝑖 + 1 at a lower speed than the critical value, is considered to be a vehicle about to stop. 
Similarly, it is assumed that a vehicle travelling at time 𝑖 − 1  at a speed lower than the critical value 
and at time 𝑖 + 1  at a speed higher than the parameter, is considered to be a vehicle about to accelerate 
again. Thus, {𝐴, 𝑆} = 𝑉!"# ≶ 1 ≶ 𝑉!$#, where 𝐴 are the acceleration points and 𝑆 are the stopping 
points at time 𝑡, and the critical value is equal to 1 km/h. Then, the critical points are filtered based 
on the lanes’ coordinates (Figure 3: Critical points during acceleration (green) and deceleration (red) 
for all lanes in the time space diagramFigure 3). It should be noted that ongoing work of the authors 
aims to automatize the process of lane assignment of each trajectory or point in the network. 



4 
 

 
Figure 3: Critical points during acceleration (green) and deceleration (red) for all lanes in the time space diagram 

Then data are filtered to deal with noisy data around the critical value. Specifically, two points from 
the same vehicle separated by less than 5 sec are considered to be as one point. The final result of this 
process is illustrated in a time-space diagram in Figure 4, for a specific lane. It can be seen that the 
form of the shockwaves is easily recognizable while the cloud of points representing stop-and-go 
conditions can also be distinquished. 
 

 
Figure 4: Critical points during acceleration for the left lane 

When it comes to spillback phenomena, that concern the blockage of an intersection due to the 
upstream traffic light, they are examined using the stopping points. Specifically, as the position of all 
traffic signals in the study area is known, a spillback will be defined as the intersection point between 
the stopping shockwaves and for distance equal to position of the traffic signal (Figure 5). 
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Figure 5: Spillback illustration in the time space diagram 

 
2.3. Rule-based approach 
The set of rules that define a shockwave are described below and illustrated in Figure 6. The first 
condition sets a maximum time interval (10000 msec) between points 𝑗 and 𝑖. The second condition 
is based on the assumption that a shockwave moves through traffic not faster than 20 km/h. The third 
condition is that point 𝑗 must be closer to the origin than point 𝑖, ensuring that the slope of the 
shockwave is negative. By combining these four conditions in order to identify shockwaves, the 
search perimeter of points becomes a surface (shown in blue in Figure 6). If points 𝑖, 𝑗 and 𝑘 meet 
the four conditions then the three points will belong to the same shockwave and therefore will have 
the same shockwave’s ID. 
 

𝑡𝑖𝑚𝑒% − 𝑡𝑖𝑚𝑒& < 10000	(1)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒& − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒% < 20 ∙
𝑡𝑖𝑚𝑒% − 𝑡𝑖𝑚𝑒&
3600 ∙ 1000 	(2)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒% − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒& < 0	(3)
𝑡𝑖𝑚𝑒% − 𝑡𝑖𝑚𝑒& > 0	(4)

 

 
Figure 6: Illustration of the search area for the rule-based identification of shockwaves 

 
2.4. Unsupervised Clustering approach 
For the specific study, the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 
algorithm is applied to the starting and ending points. Unlike other clustering algorithms like k-means, 
DBSCAN figures out the number of cluster while two parameters are required to be determined. The 
first parameter, epsilon corresponds to the maximum distance between points. The value of epsilon 
is set by calculating the distance to the nearest 𝑛 points for each point, sorting and plotting the results. 
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Then, the optimal value for epsilon is set as the point of maximum curvature in the plot. An automated 
method to calculate the optimal value epsilon based on the abovementioned process can be found in 
(Rahmah and Sitanggang, 2016). The second parameter, minimum_samples sets the minimum 
number of points that can form a cluster. 
 
3. RESULTS AND DISCUSSION 
3.1. Rule based approach 
 
In Figure 7, it can be seen that the deterministic way of the rule based approach, results in the loss of 
some of the shockwaves and does not perform well in identifiying smoother shockwaves or stop-and-
go conditions. It should be noted that while different thresholds were examined, the ones that are 
described above are the ones that produce the best results. It is seen that for the left and central lanes 
shockwaves are identified during almost all periods. However, for the right lane, unlike the two 
previous ones, shows shockwaves only during a period of about 350-600 sec. 
 
Despite the uncertainty of the rule-based approach, it can be seen that shockwaves appear mostly in 
the left and central lane, while for the right lane shockwaves appear between the first and second 
traffic signal, where a bus stop is present. Moreover, upstream the second traffic signal an extra lane 
is added that increases the capacity as only vehicles from the right lane can reach the fourth lane). 

 
Figure 7: Illustration of identified shockwaves (red lines illustrate stopping waves, green lines illustrate start 
shockwaves, blue horizontal lines represent the three traffic signals and yellow points illustrate spillbacks) 

3.2. Unsupervised Clustering 
For the specific paper, only the results from the left lane are presented. One of the issues that emerged 
was that DBSCAN is very sensitive to scale since epsilon is a fixed value for the maximum distance 
between two points. The arithmetic values of the spatial and temporal information of the critical 
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points have different ranges which then affects the calculation of the epsilon value in favor of the 
parameter with the larger values. For this case, the range of distance is [0.08, 0.343] in km while the 
time’s range is [47120-900440] in msec. It should be noted that different normalization techniques 
were first applied that led to misclasification of shockwaves as the physical meaning of time and 
space was not taken into account. Thus, it was found that when the values of time are divided by 106, 
the algorithm’s sensitivity is “manipulated” so that the clusters that are formed have a physical 
meaning. In Figure 8, the result for the estimation of the optimal epsilon value is illustrated. 

 
Figure 8: Estimation of the optimal epsilon value for the DBSCAN algorithm. 

Then, our model is trained selecting 0.05 for epsilon and setting minimum_samples equal to 3. In 
Figure 9 and Figure 10 the results of the DBSCAN algorithm are presented. It is seen that the model 
has classified the densely populated areas, and shockwaves are presented better than the rule-based 
approach. The noise (critical points that are not part of a shockwave) is categorized with grey color. 
 

 
Figure 9: Identified starting shockwaves during acceleration 
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Figure 10: Identified starting shockwaves during deceleration 

 
After the clusters/shockwaves have been formed, they can be represented as a first degree polynomial, 
which allows the identification of their key characteristics, such as the speed and duration of the 
shockwave (Figure 11). 
 

 
Figure 11: Histograms for (a) speed and (b) duration of shockwaves 

 
4. CONCLUSIONS 
 
In this paper, the pNEUMA dataset is utilized to identify shockwaves using two different approaches. 
It is seen that the DBSCAN algorithm, after the necessary modifications and parameter estimation 
performs better than the rule-based approach. Shockwaves can be detected by first identifying the 
critical points during acceleration and deceleration and their key characteristics such as speed and 
duration can be extracted. 
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In our future research attempts, we aim to use more data and examine how well the DBSCAN in 
identifying shockwaves for different arterials and congestion levels. In addition, we aim to further 
study and model the propagation of congestion in terms of shockwave formation and associate it with 
temporal and spatial characteristics and the formation of spillbacks. 
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