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1 Introduction and Context
In the last 40 years, transportation demand modeling has almost exclusively been tackled
using discrete choice models (DCMs). This is due to their high interpretability, which allows
to verify their compliance with well-established behavioral theory. However, the develop-
ment of DCMs through manual specification is laborious. The predominant approach for
this task is to a priori include a certain number of variables that are regarded as essential
in the specification of the model; incremental changes are then tested in order to improve
its goodness of fit, while ensuring its behavioral realism (Koppelman and Bhat, 2006). Be-
cause the set of candidate specifications grows beyond manageable even with a moderate
number of variables under consideration, this kind of theory-driven approaches appears to
be time-consuming and prone to errors. Modelers tend to rely on common sense or intuition
without further validation of the supposedly prevailing constructs they prioritize, while the
implications of working with incorrectly specified models and possibly biased parameters
are largely underestimated (Torres et al., 2011, Van Der Pol et al., 2014).

This issue, worsened by the advent of big data and the need to analyze ever-larger datasets,
has driven an increasing focus on machine learning (ML) as a way of relieving the modeler
of the burden of model specification. In the past years, numerous studies have investigated
the usefulness of ML classifiers as an alternative to DCMs by comparing logit models with
methods such as decision trees (Tang et al., 2015; Lhéritier et al., 2019), support vector
machines (Zhang and Xie, 2008; Paredes et al., 2017) or neural networks (Zhao et al., 2018;
Lee et al., 2018). The studies indicate that the latter are outperformed in terms of prediction
accuracy (Hagenauer and Helbich, 2017; Wang and Ross, 2018); however, the former suffer
from a crucial limitation: they lack interpretability. The goal of DCMs is to accurately
predict the choices of a population in a particular context, but the estimated values of the
parameters are equally important: DCMs have strong behavioral foundations that originate
in random utility theory (McFadden, 1974) and their mathematical structure allows to
understand the decision processes, in addition to predicting their outcome. DCMs may be
worse at prediction than their ML counterparts, but the former provide valuable insights
into the underlying process that individuals follow when making choices.
∗School of Management and Engineering Vaud (HEIG-VD) HES-SO University of Applied Sciences and

Arts Western Switzerland, {nicola.ortelli,matthieu.delapparent}@heig-vd.ch
†Transport and Mobility Laboratory (TRANSP-OR), École Polytechnique Fédérale de Lausanne (EPFL)

Switzerland, {nicola.ortelli,tim.hillel,michel.bierlaire}@epfl.ch
‡Machine Learning for Smart Mobility Group (MLSM), Danmarks Tekniske Universitet (DTU) Denmark,

{camara}@dtu.dk

1



To the best of our knowledge, few studies that combine DCMs with data-driven methods
preserve the interpretable closed-form utility expressions of the former. These include several
approaches: Sifringer et al. (2018), Pereira (2019) and Han et al. (2020) make use of neural
networks to learn different representations to be included in standard logits; Brathwaite
et al. (2017) provide a microeconomic framework for the interpretation of decision trees
and combines those with DCMs to model semi-compensatory decision making; Hillel et al.
(2019) use a gradient boosting decision trees ensemble to inform the utility specification of
a DCM; Paz et al. (2019) use a simulated annealing algorithm to select the optimal set of
variables and parameter random distributions of a mixed logit model.

In order to address the limitations of both ML classifiers and DCMs, in this paper we in-
troduce a data-driven method for the specification of logit models. Our approach involves a
metaheuristic procedure that mimics the way an experienced modeler would develop a spec-
ification, while ensuring the set of candidates is explored thoroughly, impartially, and effi-
ciently. The approach combines three primary ingredients: (1) a set of operators that modify
an existing model into another one that is not too different, (2) a measure of performance
that allows to compare the quality of two specifications and (3) a variable neighborhood
search heuristic that organizes the model development phase. We believe our algorithm can
serve the scope of assisting inexperienced analysts in the task of model development, but
also provide relevant insights to more accomplished modelers.

2 Methodology
Our algorithm makes use of a variable neighborhood search (VNS) procedure to sequentially
apply small modifications on an initial utility specification, while assessing the induced im-
provement by means of a measure of performance. The current version of our algorithm
is limited to logit models and linear-in-parameters utilities. Following Bierlaire (1998) we
include non-linear transformations of variables by explicitly specifying Box-Cox transforms
with prespecified parameters (Box and Cox, 1964) and segmentation of parameters using
categorical variables. Notationally, this translates to writing the observed utility that indi-
vidual n associates to alternative i from her choice set Cn as

Vin =

Ki∑
k=1

Bik(cn, sik)x
(λtik )

ink vik, (1)

where xin = [xin1 · · ·xinKi ] is a user-defined vector of potential explanatory variables asso-
ciated with alternative i and vi = [vi1 · · · viKi ] is a vector of indicators: each vik is equal to
1 if variable xink enters the model, and 0 otherwise. Furthermore, the notation x(λ) denotes
a Box-Cox transformation of x, defined as

x(λ) =

{
xλ−1
λ if x 6= 0,

log(x) if x = 0.
(2)

λtik may only take value from the user-defined set {λ1, . . . , λL}; the indicator tik is therefore
constrained to the values {1, . . . , L}. Finally, we define Bik(cn, sik) as

Bik(cn, sik) =

Dsik∑
d=1

βikdδd(cn), (3)

where, cn is a user-defined vector of P categorical socioeconomic variables that may be
considered for segmentation, sik = [sik1 · · · sikP ] is a vector of indicators denoting the ones
selected to interact with variable xink and δd(cn) is an indicator that equals 1 if individual
n belongs to population segment d and 0 otherwise. We denote by Dsik the total number of
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population segments obtained through the division of the sample according to the selected
socioeconomic variables. In other words, Bik(cn, sik) assigns a different parameter to each
individual n depending on the population segment it belongs to.

Given the notation described in Equation 1, any model specification M generated by our
algorithm may be unequivocally characterized by the three “controllers” vi = [vi1 · · · viKi ],
ti = [ti1 · · · tiKi ] and Si = [si1 · · · siKi ]:

M =
⋃
i∈C
{vi, ti,Si}. (4)

We may now formulate the optimization problem our algorithm is designed to solve as

min
vi,ti,Si

f(M)

subject to: vi ∈ {0, 1}Ki ∀i ∈ C,
ti ∈ {1, . . . , L}Ki ∀i ∈ C,
Si ∈ {0, 1}Ki×P ∀i ∈ C.

(5)

The remainder of this section is divided into three parts; each introduces one of the ingredi-
ents our algorithm is build on, namely: (1) the operators we use to bring small changes to
an existing specification, (2) the measure of performance f(·) used to assess the quality of
a model and (3) the metaheuristic procedure that organizes the specification development
phase.

2.1 Operators
The operators used by our algorithm arise from observing how modelers manually develop
utility specifications; they correspond to the typical elementary modifications that are con-
sidered and tested during such process. Suppose an initial specificationM , as the one shown
in Equation (4). The operators used by our algorithm are defined as follows:

• Operator V-ADD adds a nonselected variable xjnk to enter the utility of alternative j,
which corresponds to switching the value of vjk from 0 to 1:

V-ADD(M, j, k) :
⋃
i∈C
{vi, ti,Si} →

⋃
i∈C
{vi + δijek, ti,Si}, (6)

where δij is the Kronecker delta and ek is a vector of the natural basis.

• Operator V-REM is the reciprocal of V-ADD; it removes a variable xjnk from the
model, provided that tjk = 1 and sjk = 0:

V-REM(M, j, k) :
⋃
i∈C
{vi, ti,Si} →

⋃
i∈C
{vi − δijek, ti,Si}. (7)

• Operator T-ADD modifies the Box-Cox parameter of a given variable xjnk from λtjk
to λtjk+1, provided that tjk < L:

T-ADD(M, j, k) :
⋃
i∈C
{vi, ti,Si} →

⋃
i∈C
{vi, ti + δijek,Si}. (8)

• Operator T-REM is its reciprocal; it decrements the value of tjk by 1 as long as tjk > 1:

T-REM(M, j, k) :
⋃
i∈C
{vi, ti,Si} →

⋃
i∈C
{vi, ti − δijek,Si}. (9)
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• Operator S-ADD interacts xjnk with a socioeconomic variable cnp, which corresponds
to switching the value of sjkp from 0 to 1:

S-ADD(M, j, k, p) :
⋃
i∈C
{vi, ti,Si} →

⋃
i∈C
{vi, ti,Si + δijekp}, (10)

where ekp is a matrix of the Ki × P natural basis.

• Operator S-REM is the reciprocal of S-ADD: it deactivates the interaction between
xjnk and cnp by switching the value of sjkp from 1 to 0:

S-REM(M, j, k, p) :
⋃
i∈C
{vi, ti,Si} →

⋃
i∈C
{vi, ti,Si − δijekp}. (11)

2.2 Measure of Performance
The second ingredient of our algorithm is the measure of performance f(M) that enables
the comparison of the relative quality of two models. Traditionally, the superiority of a
specification over another is evaluated by means of statistical tests. However, those are not
appropriate in the context of an automated search (Thompson et al., 1991; Thompson, 1995;
Whittingham et al., 2006; Harrell, 2015). As Smith (2018) points out, standard statistical
tests assume a single verification of a prespecified model and are therefore inadequate when
a sequence of iterations is employed to select explanatory variables. The consequence of
repeated statistical testing for variable selection—or data dredging —is that it results in
models with mediocre inferential properties and poorly estimated parameters, which must
be avoided by any means (Lukacs et al., 2010).

We therefore diverge from this approach and, instead, use the Bayesian information criterion
(BIC) to decide on the best direction to follow during the search. The BIC is defined by
Schwarz (1978) as

fBIC(M) = log(N)K − 2L(M), (12)

where N is the number of observations in the considered dataset andK is the total number of
estimated parameters and L(M) is the maximized log-likelihood of model M . The criterion
is as a large-sample approximation of the log-Bayes factor, which, when equal priors are
assumed on all candidate models, can be seen as a measure of the evidence in favor of a
certain model to be the most probable (Burnham and Anderson, 2004).

2.3 Metaheuristic Procedure
Finally, we describe the metaheuristic procedure used by our algorithm. It consists of a
variation of the basic VNS (Hansen and Mladenović, 2002) that utilizes a first-improvement
local search (FILS) subroutine and a maximum-iteration stopping condition, as illustrated
in Algorithm 1.

The VNS algorithm is originally proposed by Mladenovic and Hansen (1997). It relies on
local search, but tackles its main limitation by considering several neighborhood structures
rather than a single one. Those are systematically alternated during the search, which
effectively prevents getting stuck in local minima. The change of neighborhood structure is
shown in Lines 10 – 15 of Algorithm 1; the outcome depends on whether the specification
obtained through the FILS subroutine outperforms the best current model or not. The
shaking step described in Algorithm 2 is an additional mechanism that serves the same
scope of avoiding local minima: whenever a neighborhood change is performed, the starting
point of the next FILS subroutine is randomly drawn from the neighbors of the best solution
encountered so far, rather than the best solution itself.
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Algorithm 1: VNS for assistedMNL
inputs : initial specification M ,

neighborhood structures N1, . . . ,NH ,
maximum number of iterations imax

output: best encountered specification M

1 i← 0;
2 while i < imax do
3 h← 1;
4 repeat
5 M ′ ← Shake(M,Nh);
6 i← i+ 1;
7 M ′, j ← FILS(M ′,Nh);
8 i← i+ j;
9 if fBIC(M

′) < fBIC(M) then
10 M ←M ′;
11 h← 1;
12 else
13 h← h+ 1;
14 end
15 until h = H;
16 end
17 return M∗

Algorithm 2: Shake function
inputs : specification M ,

neighborhood structure N
output: randomly selected neighbor M ′

1 {M1, . . . ,MW } ← Shuffle(N (M));
2 M ′ ←M1;
3 return M ′

Algorithm 3: FILS function
inputs : initial specification M ,

neighborhood structure N
outputs: locally optimal specification M ,

number of iterations i

1 i← 0;
2 repeat
3 {M1, . . . ,MW } ← Shuffle(N (M));
4 w ← 0;
5 while w < W do
6 w ← w + 1;
7 if fBIC(Mw) < fBIC(M) then
8 M ←Mw;
9 i← i+ 1;

10 break

11 end
12 end
13 until w =W ;
14 return M, i
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The current version of our algorithm cycles through three different neighborhood structures:
each gathers the specifications obtained through all possible applications of one operator
from Section 2.1 or its reciprocal on the current solution M :

NV(M) = {V-ADD(M, i, k) | vik = 0}
∪ {V-REM(M, i, k) | vik = 1, tik = 1, sik = 0},

NT(M) = {T-ADD(M, i, k) | tik < L}
∪ {T-REM(M, i, k) | tik > 1},

NS(M) = {S-ADD(M, i, k, p) | sikp = 0}
∪ {S-REM(M, i, k, p) | sikp = 1}.

(13)

3 Experiments
We test the algorithm described in the previous section on the Swissmetro dataset (Bierlaire
et al., 2001), which consists of survey data collected in Switzerland in 1998 to analyze the po-
tential impact of the Swissmetro, an innovative mode of transportation. Respondents were
asked to state their favorite transportation mode among three alternatives— train, Swiss-
metro and car— in nine different hypothetical situations. 10′395 observations remain after
removing incomplete data; 20% of these are set aside for out-of-sample validation.

We allow the algorithm to consider 8 potential explanatory variables, 3 different values for
the Box-Cox parameters— 1, 1

2 , 0—and 5 categorical variables for segmentation.1 For the
sake of simplicity, we limit the number of simultaneous segmentating variables to two for each
parameter of alternative-specific constant; still, the number of possible specifications is over
1015. Table 1 gathers the results of four runs of the algorithm in such configuration, together
with the maximized log-likelihood of the obtained specifications both on the training and
validation sets of observations. We compare those with the benchmark logit model presented
in Bierlaire et al. (2001).

Table 1: Comparison of the models obtained from the four runs with the benchmark model.

Run 1 Run 2 Run 3 Run 4 Benchmark

BIC 11947.5 11981.9 12010.9 11947.5 13211.3
Number of estimated models 1174 942 1034 1041 –
Running time [ h ] 3.7 3.4 3.7 3.6 –

In-sample log-likelihood −5851.9 −5819.5 −5874.6 −5851.9 −6565.0
Out-of-sample log-likelihood −1550.0 −1615.5 −1548.9 −1550.0 −1633.5
Estimated parameters 27 38 29 27 9
Considered variables 11 12 12 11 7

As expected, the four specifications obtained after 150 iterations vary substantially in terms
of BIC, despite all runs having the same constants-only initial specification. This is due to
the stochastic nature of the shaking step and FILS subroutine. Interestingly, Run 1 and
Run 4 reach the same specification, which is also the best of the four in terms of BIC.
As regards the log-likelihood yielded on the validation data, the model reached by Run 3
performs better. Figure 1 illustrates the evolution of the BIC during each of the runs.

1A description of the considered variables is provided in the Appendix. We refer the reader to Antonini
et al. (2007) for a complete description of the dataset.
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Finally, Table 2 gathers the estimation results of the model reached by Run 1 and Run 4. All
parameters appear to be significant and have the expected sign; additionally, the parameters
of the Box-Cox transformations seem to be behaviorally realistic.
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Figure 1: BIC vs iterations for all runs.

4 Conclusion
In this study, we introduce a new approach for assisted specification of DCMs that uses a
metaheuristic procedure to generate good models. The validity of the proposed algorithm is
empirically demonstrated using choice data. Out-of-sample validation shows that our algo-
rithm reaches high-quality specifications while maintaining an interpretable model structure.
The parameter values are consistent with behavioral theory and statistically different from
zero, but this should be taken with a grain of salt: in stated-preference data the essential
variables are known from the design of the survey.

Intended future work includes the development of a mechanism that systematically rejects
behaviorally inconsistent specifications during the search procedure, so as to obtain equally
good results when applying our algorithm on revealed-preference datasets. Other relevant
directions of search include (1) further testing and additional case studies to prove the
validity of our approach, (2) extending the framework to advanced DCM structures such
as nesting, mixtures and more complex interactions between variables, and (3) rigorous
investigation to find ways of bringing the VNS to convergence faster.
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Table 2: Estimation results of the best model reached by Run 1 and Run 4.

Parameter Value Rob. Std err Rob. t-test

B_TRAIN_TT(0)
GA=0,MALE=0 −2.94 0.126 −23.4

B_TRAIN_TT(0)
GA=0,MALE=1 −3.52 0.12 −29.3

B_TRAIN_TT(0)
GA=1,MALE=0 −0.391 0.194 −2.02

B_TRAIN_TT(0)
GA=1,MALE=1 −0.521 0.189 −2.75

B_TRAIN_CO( 1
2 )

FIRST=0,MALE=0 −0.124 0.00881 −14.1
B_TRAIN_CO( 1

2 )
FIRST=0,MALE=1 −0.114 0.00811 −14.0

B_TRAIN_CO( 1
2 )

FIRST=1,MALE=0 −0.0934 0.00837 −11.2
B_TRAIN_CO( 1

2 )
FIRST=1,MALE=1 −0.1 0.0068 −14.8

B_TRAIN_HE(0)
FIRST=0 −0.463 0.068 −6.81

B_TRAIN_HE(0)
FIRST=1 −0.632 0.0712 −8.88

ASC_SMGA=0 −5.54 0.551 −10.1
ASC_SMGA=1 25.7 3.05 8.42

B_SM_TT(0)
WHO=1 −1.78 0.0755 −23.5

B_SM_TT(0)
WHO=2 −1.54 0.0762 −20.2

B_SM_TT(0)
WHO=3 −1.59 0.0851 −18.7

B_SM_CO(0)
GA=0,MALE=0 −0.851 0.0709 −12.0

B_SM_CO(0)
GA=0,MALE=1 −1.45 0.0712 −20.3

B_SM_CO(0)
GA=1,MALE=0 −4.28 0.384 −11.2

B_SM_CO(0)
GA=1,MALE=1 −4.15 0.36 −11.5

ASC_CAR −15.2 0.623 −24.5
B_CAR_TT( 1

2 )
FIRST=0,MALE=0 −0.0723 0.0163 −4.45

B_CAR_TT( 1
2 )

FIRST=0,MALE=1 −0.173 0.0102 −16.9
B_CAR_TT( 1

2 )
FIRST=1,MALE=0 −0.0718 0.0161 −4.44

B_CAR_TT( 1
2 )

FIRST=1,MALE=1 −0.195 0.0106 −18.4
B_CAR_CO(1)

WHO=1 −0.0113 0.00113 −9.98
B_CAR_CO(1)

WHO=2 −0.00533 0.00113 −4.72
B_CAR_CO(1)

WHO=3 −0.00478 0.00183 −2.61

Sample size: 8316

Init log likelihood: −8603.3
Final log likelihood: −5851.9
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5 Appendix

Table 3: Swissmetro dataset. Definition of the considered variables and statistics.

Variable min max mean std.

TRAIN_TT 31 1049 166.63 77.35
Train travel time [min]. Based on the car distance.

TRAIN_CO 4 5040 514.34 1088.93
Train cost [CHF ]. If the traveler owns a GA, equal to its price.

TRAIN_HE 30 120 70.10 37.43
Train headway [min].

SM_TT 8 796 87.47 53.55
Swissmetro travel time [min]. A speed of 500 km/h is considered.

SM_CO 6 6720 670.34 1441.59
Swissmetro cost [CHF ]. Proportional to the rail fare.

SM_HE 10 30 20.02 8.16
Train headway [min].

CAR_TT 0 1560 123.80 88.71
Car travel time [min].

CAR_CO 0 520 78.74 55.26
Car cost [CHF ]. A fixed average cost per kilometer is considered.

GA 0 1 0.14 0.35
Travel card ownership. 1 if the traveler owns one, 0 otherwise.

MALE 0 1 0.75 0.43
Traveler’s gender. 0 if female, 1 if male.

FIRST 0 1 0.47 0.50
1 if first-class traveler, 0 otherwise.

LUGGAGE 0 3 0.68 0.60
0 if none, 1 if one piece, 3 if several pieces.

WHO 1 3 1.49 0.71
Who pays for the trip. 1 if self, 2 if employer, 3 if half-half.
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