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Abstract

Understanding travel behaviour in transportation system is key challenge
to calibrate and simulate the usage of urban mobility networks. We define in
this work a path-based centrality based on the simplicity of the path between
two locations in road network. Analyzing a huge dataset of GPS points of more
than 20’000 vehicles and 170’000 trips, we reconstructed the real trajectories and
estimate the degree of simplicity of each of them. Interesting insights of drivers’
behaviour came from the comparison with the shortest and the simplest path.
This allowed us to categorize trips according with their complexity and extract
general behavioural relation among drivers. Finally, we measured the effect of
considering simplicity as path-choice factor influences the distribution of road
usage and the link betweenness.

Introduction

In an urban network, the shortest path for a driver it is not always the most
convenient and probable choice. Other factors rather than time and length are
implied for the travellers’ path choice. Habits, risks, as well as the simplicity
have important influence in drivers’ behavior. Learning how drivers chose their
path it is of fundamental help for traffic management. In fact, knowing the
most probably used road by transportation users can lead to a more efficient
management of the urban network and prevent traffic jams and slowdowns. In
sociology literature, it is well know the concept of Dunbar Number (see for
example [6]), how the limit of information for certain type of social relation a
person can effectively hold. This finding has inspired the results in [5] where the
authors compute the information of the all shortest path algorithm as a measure
of simplicity of spatial networks. Another definition of simplicity for complex
networks has been done in the work of Costa et al. [4], where the authors identify
simplicity with the regularity of the network and some homogeneity among local
clustering coefficients and node centralities. The above-mentioned works have in
common to describe the network in a static way and at node level, looking at the
topological structure of the reseau and on its connection properties. In our work,
we designed an algorithm to quantify the information that a driver has to retain
during a trip counting the number of changes at the intersection. With change
we intent when a driver make a decision during its trip, for example turning
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right or left not following the natural extension of the road. For this scope, we
defined a path-based centrality that measures the level of complexity of each
trip and, at the big scale, identifies the more information-demanding road. A
change happens every time the path deviates from its natural extension because
of their relative angle deviation or because different functional road type. By
studying the characteristics of real trajectories and comparing their degrees of
complexity and length, it allows us to distinguish behavioural patterns among
drivers and average coefficient of shortness and simplicity.

1 The simplest path algorithm

Let G = G(N ,L) be a graph representing a network with N nodes and L links.
We consider a path in G a collection of links {`1, `2, . . . , `r} ∈ Lr with `i adjacent
to `i+1 ∀i = 1, . . . , r − 1. Given a minimal angle perception threshold ∆, we
consider that a driver makes a change going from `i to `i+1 if and only if all
these conditions are satisfied:

(a) There is more than 1 link belonging to the same road type of `i;

(b) The angle between `i and `i+1 is not the minimum;

(c) The angle between `i and `i+1 is greater than ∆.

In our application, we fixed the threshold ∆ = π/6. This algorithm is based
on the road perception that the driver has during her/his trip. Whenever the
driver makes a decision, i.e. needs information, we count it as a change. Here,
we propose two different ways to quantify this change: Boolean (1 or 0) or
with a weight given by the arctan() between the two consecutive road vectors
of her/his path. We show in the results as these two methods brings similar
conclusions for what concerning the classification of observed path and drivers.
An illustrative example of this algorithm is shown in Fig. 1. We define the
simplest path between two points (O,D) on the map, the path which has the
minimal number of changes and, in case of multiple solutions, the shortest one
among them.

2 Results

2.1 Simplicity and shortness in paths.

For each trips in our dataset we individuated its origin (O) and destination
(D) in the urban map of Shenzhen. Then, we calculated the trip length of
the observed trajectory (RE(O,D)) and the number of changes that the driver
effectuated during his trip (O,D) with our algorithm. For the same pair of
origin-destination, we computed the shortest path (SH(O,D)) and the sim-
plest path (SI(O,D)) and, again, calculated the trip length and the number of
changes. We visualize the results in Fig. 2. We can notice how the real paths
use in average the double in term of number of changes and in trip length with
respect to the simplest and the shortest path respectively. In order to analyze
our dataset of observed trajectories, we defined the following parameters for
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Figure 1: Example of the counting changes algorithm. On the left, the path in green
has no change at the intersection pi − pi+i because the angle α is the minimum between the
other choice (with β > α) and is under the perception threshold ∆. On the other hand, on
the right, we count the passage between pi and pi+1 as a change, considering pi+1 not the
”natural extension” of the road pi.

each Origin-Destination (OD) and path p:

∆OD
ch (p) =

ch(p(O,D))− ch(SI(O,D))

ch(SI(OD))
with ch(SI(O,D)) 6= 0

∆OD
len (p) =

len(p(O,D))− len(SH(O,D))

len(SH(O,D))
with len(SH(O,D)) 6= 0

with ch(·) and len(·) the functions that compute the number of change and the
trip length respectively. In Fig. 3 we report the scatter plot of ∆OD

ch (RE) (3.
a) and ∆OD

len (RE) (3.c) for each OD of our dataset and their averages ∆̄ch(RE)
and ∆̄len(RE) (resp. 3.b and 3.d). We can notice that, however, the average
∆̄ch(RE) (≈ 0.55 for the observed and ≈ 0.2 for the SH) and ∆̄len(RE) (≈ 0.25
for RE and 0.13 for the SI) are both very stable during the whole day and that
their distributions in panel a) and c) present some correlation with the traffic
congestion. This means that a percentage of drivers and of trip are influenced
by traffic not only for the increase of travel time but also in drivers’ behaviour
and path choice, with a substantial increment of complexity, detour and trip
length.

2.2 Trip categorization and driving behavioural priorities

In Fig. 4 we compare the ∆OD
ch of the observed path RE with which of the

shortest path SH and the ∆OD
len of the RE with which of the simplest path.

Therefore, we define 5 categories of trips:

(N): trips OD with ∆OD
ch (RE) > ∆OD

ch (SH) and ∆OD
len (RE) > ∆OD

len (SI);

(L): trips OD with ∆OD
ch (RE) > ∆OD

ch (SH) and ∆OD
len (RE) < ∆OD

len (SI);

(C): trips OD with ∆OD
ch (RE) ≤ ∆OD

ch (SH) and ∆OD
len (RE) > ∆OD

len (SI);

(LC): trips OD with ∆OD
ch (RE) ≤ ∆OD

ch (SH) and ∆OD
len (RE) < ∆OD

len (SI);

(E): trips OD with ∆OD
ch (RE) = ∆OD

ch (SH) and ∆OD
len (RE) = ∆OD

len (SI).
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Figure 2: Relation between total trip length and number of changes for each trip
with the same Origin-Destination table. We reported the results of the shortest paths
(red) and the simplest path (yellow) compered to the observed trajectory (blue).

These 5 categories distinguish the different travel behaviour factors of the drivers.
In particular, trips in cat(N) does not minimize neither the number of change
nor the trip length. In cat(L) and the trip length is shorter than which of
the simplest path while in cat(C) the paths are simpler than the correspond-
ing shortest paths. The paths that belong to cat(LC) are the best compromise
between shortness and simplicity, being those paths shorter than the correspond-
ing simplest path and simpler than the corresponding shortest path. Finally in
cat(E) there are the paths that coincide with the shortest and the simplest. The
percentage of each of these categories are reported in the pie chart in Fig. 5.
We reported 3 examples of trips belonging to categories (LC), (L) and (C) in
Fig. 6.

We denote the fraction of links that two paths p1 and p2 with the same
Origin and Destination have in common with the overlapping function O(p1, p2).
Therefore, if O(p1, p2) = 1 the two paths are the same and if O(p1, p2) = 0 they
do not have any links in common. In Fig. 7 we show the amount of OD pairs
of the simplest (yellow) and the shortest (red) path that share at least a certain
fraction of links with the observed path. The shortest path seems to have an
higher overlapping score than the simplest path. We also plotted in yellow
dashed line the overlap score if we use the simplest path algorithm weighted
with the angle of each turn and it results lower than the other two cases.
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Figure 3: Distribution (left) and average (right) of the change ratio ∆change and
length ratio ∆length.

2.3 Betweenness centralities for shortest, simplest and real
path.

Once we compute the trajectory for real, shortest and simplest path, we are
also able to estimate the usage of each road. The classical way to estimate the
centrality of link in a graph is to calculate with an all shortest path algorithm
the betweenness [1] of each node (or link) in the graph. As in [3], it corresponds
to the weighed betweenness for link ` according to the three different ways to
draw a path between points in a map, BRE(`), BSH(`), BSI(`). The results
that we show in Fig. 8 tell that the observed drivers’ paths prefer to pass by
the external arteria (on the left) while the betweenness BSI(`) following the
simplest path algorithm highlight the central straight arteria.

Another interesting result comes from the analysis of the distribution of the
betweenness in the three scenarios (shortest-simplest-real). For this aim, we
calculated the Gini coefficient of the distribution of the betweenness values at
each time step (one every 6 mins) during all day (Fig. 9). Gini coefficient ([7])
is a index of inequality and the more is close to one the more the values {xi}
are unequal distributed. In formulas,

G =
E

2M
, with E =

1

n2

∑
i

∑
j

|xi − xj | and M =
1

n

∑
i

xi.

A Gini coefficient equal to 0 means that all the links have the same value while it
is equal to 1 when only one element has the total value. We remark that the dif-
ference in time comes only for the different Origin-Destination table. The peak
that we register during the night is due to the scarcity of trajectories in our
dataset that imply a not full homogeneous coverage of the network enhancing
inequality in betweenness distribution. We notice how the distribution of BRE
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Figure 4: Comparison of the degree of simplicity between Real and Shortest path
(top) and the shortness between Real and Simplest paths (bottom). In different
colors are represented the 4 categories that we explain in the text. In particular, in red the
real trajectories simpler than the shortest path and shorter than the simplest path while in
blue the trip of cat(N) longer and with more changes than the shortest and the simplest. In
the top panel in green the real trip with a simpler path than the shortest but longer than the
simplest path and in cyan, in the bottom panel, the trip shorter than the simplest but with
more change than the shortest path. The trip in cat(E) are in the diagonal (yellow) in both
panels.
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Figure 5: Pie chart of the categories of trips.
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Figure 6: Example of trip of categories LC (top), L (middle) and C (bottom). In
blue we draw the observed trajectory and we compare it with the shortest path (red line) and
simplest path (dark yellow line). We can distinguish where the real user chose a path shorter
than the simplest path (middle) or simpler than the shortest one (bottom) or both (top).
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Figure 7: Statistics of the link overlapping between the shortest path (red) and
the simplest path (yellow) with the observed path for each trip.

Figure 8: Comparison of the tree different way to compute betweenness: a)
BRE(`) , b) BSI(`), c) BSH(`).

8



12am 5am 10am 3pm 8pm
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

G
in

i 
C

o
e

ff
ic

ie
n

t

Istantaneous Gini for betweenness

Real

Shortest

Simplest

Figure 9: Instantaneous Gini coefficient of the distribution of the betweeness
centrality for the tree different path types.

maintains its Gini coefficient always between the shortest (minimum) and sim-
plest path. This plot shows and quantifies that while the shortest path method
is the most adaptable, using different road and exploiting all possible alterna-
tives, the simplest path method tends to pass through the same roads ignoring
secondary roads. The observed drivers tend to use not always the shortest path
exploring part of the city network that they do not know but they try to remain
in the most know road with the consequences of a distribution of road usage
between the two other proposed methods.

Conclusions

In this work we analyzed a large dataset of real trajectories reconstructed ad hoc
with a efficient map matching algorithm. We designed a robust algorithm to
count the number of decisions that a path in a road network implies. From this
path-based measure of simplicity, we deduced the influence that the factor of
simplicity has on real path choice. The strongest results come when we compare
the real path with the simplest and the shortest path. In this way, we are able
to classify each observed path with the ratio between trip length and number of
changes. Different behaviours and priorities for drivers bring to different road
choice and consequentially different spatial pattern for traffic. Based on a huge
real demand table, we reconstructed the map of the city of Shenzhen with the
cumulative link betweenness calculated with the three types of path strategies.
The link usage might have application for traffic management and control and
also to study the impact of the perception and sensibility of drivers with the
particular transportation network design.

We also calculated the average simplicity and shortness of the observed path
and this may have application on traffic model, microsimulator calibration and
road management.

9



Figure 10: Statistics about the used demand table for Shenzhen downtown 7th
September 2011. The total number of trips is more than 170,000 with 13,000 during the
peak hours. The distribution of the trip lengths has a positive skew and the average is about
3 km and a maximum of 13km.

Finally, with our method we categorize the different kind of trips into 5
categories according to their comparison with the corresponding shortest path
and simplest path. In particular, we distinguish drivers that care more about
simplicity (trip simpler than the shortest path) from who care more about trip
length (shorter that the simplest path).

3 Methods and data description

3.1 Data Analysis on real trajectories
Based on our dataset of more than 170k independent trips traced by about 20 millions of GPS
points in Shenzhen downtown, we reconstructed each trajectory matching the GPS points
into our simplified map. The frequency of GPS traces is around 30 seconds and whenever the
signal was temporarily loss for a trajectory we used a shortest path algorithm to deduce the
missing part. Given the high density of information we can assure that our method might
affect just slightly the veracity of our results. In Fig. 10 we report the distribution of the trip
lengths (on the left panel) and the distribution of trips par hour (on the rigth).
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