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1 Introduction

With the growth of the population concentrated in urban areas of large agglom-
erations, the need for e�cient and resilient multi-modal transportation systems
is paramount. To model, analyze and improve transportation dynamics at large
scale, complex networks represent an extremely versatile toolkit: multi-modal
mobility networks can be modelled as a multi-layered weighted graph.

In the last decade, several works [1, 2, 3] have shown that complex network
approaches based on computation of centrality metrics can be extremely useful
to model and analyze the resilience properties of complex networks.

In such representation, each layer of the graph can be associated to a trans-
portation mode (e.g., road, metro, buses, etc); each node of the network is an
intersection between roads, a parking spot or a bus/metro stop/station; and
the edges are links between the nodes, possibly belonging to di↵erent layers of
the transportation network (e.g., links connecting bus with metro stations or
parking areas in the proximity of a road intersection with bus stops, etc.).

In this graph-based model, it is also possible to associate weights to the
network edges, e.g., (average) travel time or, alternatively, speed/flow measure-
ments retrieved via sensors (e.g., floating car data, loop detectors, cameras, etc.)
and matched to the links of the network. We could also consider the possibility
that weights dynamically evolve in time, as it could be the case in a future-
generation smart city, equipped with an online monitoring system capable of
continually collecting tra�c speed observations at city- or region-scales (e.g.,
via navigation systems, mobile phone apps, etc.).
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Based on such model, in the rest of the paper, the mobility network and
its dynamics are therefore described by a temporal, (multi-layer) graph, com-
posed of multiple snapshots (e.g., graph instances), each associated to a di↵erent
weight configuration related to a specific period of observation (e.g., every 15
minutes). For simplicity reasons, however, in this preliminary work, we only
consider one transport mode, i.e., the road network, while the reported con-
clusions can generalize rather easily to a multi-modal graph, as we intend to
demonstrate in our future work.

Specifically, in this paper we focus on betweenness centrality (BC), a first-
choice indicator to analyze the resilience properties of complex networks. BC
has been used, e.g., to identify topological bottlenecks in metro systems [4], road
networks [5] and even multi-modal systems [6].

For a graph G with a set of nodes V and set of edges E such as n = |V |
and m = |E|, the betweenness centrality of a node v in the graph is defined as
follows:

BC(v) =
X

s,t2G

�st(v)

�st
(1)

Where �st is the number of shortest paths from source s to destination t and
�st(v) is the number of shortest paths from s to t going through node v. To e�-
ciently compute BC, the previous formula is split in contributions from di↵erent
source nodes, defined as �s•(v) =

P
t2G

�st(v)
�st

, such as:

BC(v) =
X

s2G

�s•(v) (2)

Some authors have proposed variations of the BC metric taking into account
travel demand information [7], time-varying tra�c dynamics [8] or geometric
properties of the the road network [9]. In all these work and many other from
the literature, BC is recognized as a very important metric from a transporta-
tion perspective, whose computation can unveil fundamental properties of the
represented system.

The computation of BC is however cumbersome. Based on Eq. 2, for each
node of the network it is necessary to perform a single-source shortest path
exploration on the whole graph to count the number of shortest paths exist-
ing between the source and all the other nodes in the graph. This operation
is extremely power-consuming already on medium-sized networks, and almost
prohibitive on large, multi-modal networks, thus jeopardizing the usage of this
metric in urban or region-scale scenarios and, particularly, in dynamic and (e.g.,
travel-time) weighted settings. In fact, since tra�c is highly dynamic and the
weighted shortest paths between places in cities change very rapidly especially
during rush hours, BC needs to be frequently updated, i.e., recomputed every
15 min in peak times, to have an accurate analysis of the network properties by
looking at the spatial distribution of the top-BC nodes (those that attract most
of the shortest paths at a given moment of time).

Many algorithms exist to improve the computation of this metric, but, still,
the computation time increases quickly with the size of the network, generally
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making it impossible to have a real-time computation even in the case of small
urban scales. In this paper, we discuss and analyze our original approach,
based on machine learning optimisation applied to graph theory, to fasten the
computation of BC in large scale networks.

The analyses conducted in this paper pose the bases to design an information
system for resilient smart management of large-scale road networks. By relying
on such a system, vehicles could be promptly informed about the availability of
alternative shortest paths to follow in order to rapidly reach their destination
from the current location, thus contributing to globally reduce network con-
gestion and therefore vulnerabilities, by pushing towards a more homogeneous
exploitation of the network. At the same time, the information derived from
BC computation allows urban planners and managers to perform what we call
as ahead flows monitoring. With this term, we refer to the ability of our mon-
itoring system to exploit local tra�c information to produce a global view of
flows distribution that gives insights about possible reorganization of tra�c in
the near future.

2 State of the Art

The analysis of weighted graphs via BC can provide additional information for
studying a urban system and monitoring its evolution [10, 11]. In particular,
good correlation exists between tra�c flows and node betweenness centrality,
especially when the network is congested [8]. Similar conclusions were drawn for
a related metric, i.e., dynamic e�ciency, on multi-modal networks by Geroli-
minis et al. [6]. In our previous work [12], it is further observed that edges
or nodes identified by higher values of BC, at a certain time, could represent
critical regions of the network where tra�c will most-likely concentrate in the
near future, especially if the areas connected by these nodes are associated to
high demand or topological importance.

This property confers great value and, specifically, a predictive power to the
BC metric: detecting high-BC nodes can be useful to anticipate were tra�c
could concentrate in the near future. This aspect paves the way to more in-
formed decision making systems: by continually computing BC to identify the
most relevant nodes of a temporal-evolving weighted graph and by analyzing the
changes of their distribution in space, dynamic regulation strategies or control
actions could be enacted to improve network resilience of the multi-modal trans-
port system. However, recomputing BC with high frequency to follow and even
anticipate tra�c dynamics, requires extremely rapid and scalable algorithms
which exploit network properties to significantly reduce the exploration phase
of shortest paths.

Brandes algorithm [13] is a fast algorithm based on explorations of the graph
from each node as source and the computation of the contributions during a
phase of back propagation. The algorithm has a complexity of O(nm) which is
too high for computation in real-time for large networks such as transportation
networks.
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Di↵erent types of strategies have been proposed to reduce the computation
time, for example the approximation of the BC by reducing the set of shortest
paths to explore, which is the strategy we adopt in this paper. Our approach,
based on previous work on the topic [14, 15, 5, 16], allows to accurately estimate,
with a very low error, nodes BC by clustering the graph to identify representative
nodes which will be the sources for the exploration of the graph, the main
goal being to reduce the number of explorations through the whole graph, by
preserving a very small error in the computation of BC.

3 Contribution and results

Our approach is based on the reduction of the number of explorations in the
graph by identifying representative nodes called pivot nodes. The first step to
identify pivot nodes is to cluster the network into communities using Louvain
clustering. The clustering method aims at maximize the modularity [17]. We
compute the BC inside the communities in parallel, a community being con-
sidered as a strongly-connected subgraph of G. We call this BC local BC as
it represents the BC for shortest paths from source to destination of the same
community.

Inside each community, we define border nodes as nodes linked to at least
one node from an other community. During the local BC computation we store
the number of shortest paths to reach all the border nodes of a community and
the distance, which we normalize. This allows us to group nodes into classes

of equivalence (i.e. nodes having the same normalized distances and sigmas
to reach border nodes). The nodes of a class of equivalence produce the same
contributions to nodes outside their community.

We choose one representative node in each class of equivalence, called pivot,
which will be the only source for the explorations of the graph from all of its
class (instead of an exploration from each node of the class). The contributions
produced by the pivot are the same than the ones produced by the nodes of the
same class of equivalence to nodes outside the cluster of the pivot, but not to
nodes inside.

This method is e�cient if the number of pivots k << |V | which is not
the case for a large (road network) graph. To reduce the number of classes,
we perform a second clustering that groups classes into super classes, via K-
Means. To minimize the error, we choose as pivot the node with the lowest local
BC (i.e. the most isolated node). Finally, the contributions are multiplied by
the cardinality of the super class. The sum of the local BC and the total of
contributions provides the approximated BC on all nodes.
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Algorithm 1 W2C-Fast-BC: algorithm for fast computation of betweenness
centrality (pseudo-code of the main function)

1: function W2C-FastBC(Ĝ,C, kFrac)
2: C weightedLouvainClustering(Ĝ)
3: bordernodesi  findBorderNodes(Ĝ,Ci)
4: local�i  computeLocal�(i,C,bordernodes)
5: localBCi  local�s(i) + local�z(j)
6: superClassesi  WkMeansClustering(Ci, classesi, kFrac)
7: Pi  selectP ivotOf(superClassesi, localBC)
8: �i  compute�From(Pi)
9: �i  (�i � localBC) · |superClassesi|
10: BCi  �s(i) + �z(j)
11: for i 1, |V| do
12: BCi  BCi + localBCi

13: end for
14: return BC
15: end function

For more details on the algorithm, the interested reader can refer to our
previous work [16]. As the main contribution of this paper, we analyze a very
large road network graph, detailed next, in di↵erent scenarios to firstly prove
the importance of dynamically computing weighted BC. We also exploit a large
dataset of GPS observations that let us retrieve periodically changing travel-time
weights and build di↵erent timestamped snapshots that represent our temporal
evolving road-network graph. The analysis confirms the relevance of using BC
for tra�c prediction and, particularly, the need for a stringent requirement in
terms of computation time. This requirement motivates the need for a quick al-
gorithm for BC computation over large, directed and weighted graphs. Secondly,
we prove that our solution is capable of satisfying these stringent requirements,
thus allowing for (almost) real-time computation of BC.

3.1 Dataset

For our analyses, we rely on the entire road network of the Rhone department,
France. The graph, called Rhone-ROADS in the following, corresponds to the
whole agglomeration of Lyon and its surroundings, with a geographical extent of
approximately 3,300Km

2. This dataset was created using digital maps supplied
by the French National Institute of Geographic Information (IGN). The whole
network consists of 117,605 nodes and 248,337 edges. In Sec. 3.2, we consider
multiple weighted, directed and static graphs that have been derived from the
Rhone-ROADS network by selecting some of the available topological attributes
(e.g., road segment lengths, capacity, free-flow travel times, etc.) as weight for
the edges.

In Sec. 3.3, to evaluate our algorithm for e�cient BC computation in realistic
dynamic settings, we leverage an additional dataset, namely Rhone-TAXIS,
used for extracting reliable time-varying tra�c information for a portion of
the Rhone-ROADS network. The Rhone-TAXIS dataset contains anonymized
GPS traces of taxi trips, observed over the Rhone department. The source
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(a) Undirected, unweighted
(circle size proportional to
node’s BC)

(b) Directed, length-weighted
(circle size proportional to
node’s BC)

(c) Directed, free-flow-travel-
time-weighted (circle size pro-
portional to node’s BC)

Figure 1: Comparison of BC values in three static instances of Rhone-OBS.

dataset has been collected by the French operator Radio Taxi via a fleet of
approximately 400 taxis, during 2011-2012. The dataset logs geo-referenced
taxi trips, segmented according to a variable sampling interval (between 10
and 60 seconds), with a global average of 800,000 measurements per day. As
an indicator of tra�c dynamics, we adopt the median speed observed over each
road segment (i.e., an edge of the network) during a fixed-duration of observation
(e.g., 1-hour time slots). In order to improve the quality of the Rhone-TAXIS
dataset and properly compute our tra�c indicator, we have filtered observations
with unrealistic speeds (i.e., higher than 130 Km/h). We also use a K-nearest
neighbours regression (KNR) [18] as a spatial interpolation technique to retrieve
weight information for those links of the Rhone-ROADS network with no or very
limited observations, in order to have a full connected, temporal weighted graph.

3.2 BC on Static Graphs

As a preliminary step for the evaluation of BC on dynamic graphs, we analyze
the Lyon road network in three static configurations, i.e.: i) undirected and
unweighted, ii) weighted according to the length of each road segment and
directed according to road direction, iii) weighted according to Free-Flow Travel
Time (FFTT) and directed according to road direction. The objective of this
first analysis is not to evaluate the performance of the W2C-Fast-BC algorithm
but to shed light on the usefulness of the BC metric with weighted (and directed)
graphs, thus proving that di↵erent kinds of weights may grasp di↵erent notions
of vulnerability. Therefore, to simplify the analysis, we consider a sub-graph of
the Rhone-ROADS graph, that we call theRhone-OBS graph. A performance
analysis is instead presented, in dynamic settings, in Sec. 3.4, by leveraging
the largest available weighted dynamic graph, i.e., the Rhone-ROADS KNR-
interpolated graph.

The three static configurations of the Rhone-OBS graph are graphically rep-
resented in Fig. 1: for each node, we report BC values as circles with diameter
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(a) 05:00 (b) 08:00 (c) 20:00

Figure 2: The dynamic taxi graph: median-speed-to-max-speed ratio at di↵erent
hours of the day. Edge color (red to blue) indicates higher speed-ratio, i.e.,
reduced congestion)

proportional to BC value. Edges are filtered out for the sake of readability.
The visual inspection of the di↵erent figures of BC, makes it evident the e↵ect
of using di↵erent weights for BC computation. Particularly, it can be noticed
that on the undirected, unweighted version of the Rhone-OBS graph (Fig. 1a),
top-BC nodes are mostly positioned over the city ring road and on top of ma-
jor highways; urban arterials host the majority of top-BC nodes in the case
of the road-length weighted directed graph (Fig. 1b); finally, for the directed,
FFTT-weighted instance of the Rhone-OBS graph (Fig. 1c), top-BC nodes can
be observed on both arterials and ring roads, with a more homogeneous distri-
bution of BC values with respect to the unweighted, undirected case.

3.3 BC on Dynamic Graphs

The Rhone-OBS graph has been leveraged to extract multiple weighted graph
instances, depending on the specific time slot we consider in our analysis. The
final temporal weighted graph is composed of 24 snapshots, each corresponding
to one hour of the typical day, with di↵erent weight configurations derived from
the median speed observed on each link in that hour of the day (from the Rhone-
TAXI graph). The weight of each edge is the estimated travel time to cross the
corresponding road segment, by dividing its length by the estimated median
speed. A few instances of this temporal graph are graphically shown in Fig. 2.

We present in Fig. 3 the spatial distribution at di↵erent hours of high-BC
nodes, computed on the weighted dynamic graph. The visual inspection of the
sub-figures denotes high variability in time and space of the nodes with higher
values of travel-time weighted BC (termed TTBC in the following), as also con-
firmed in Fig. 4, which depicts the evolution over time of TTBC associated
to the node with the largest value of TTBC at given time slot. These results
provide evidence on the importance of using dynamic, weighted graphs in the
computation of BC as well as the need for a rapid algorithm for computation of
up-to-date TTBC values. In that sense, the figures unfold interesting dynamics
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(a) 06:00 (b) 07:00 (c) 08:00

(d) 09:00 (e) 10:00 (f) 11:00

Figure 3: Nodes’ travel-time-weighted BC over the dynamic graph in the time
range [05:00 - 10:00]. The size of each circle in the subplots is proportional to
node’s BC.

(a) Node with highest BC at
06:00: evolution of its BC over
time

(b) Node with highest BC at
08:00: evolution of its BC
value over time

(c) Node with highest BC at
10:00: evolution of its BC
value over time

Figure 4: Evolution over time of the top-BC node for some time slots of the
dynamic taxi graph.

of people’s mobility in the city of Lyon: during morning peak hours (Fig. 3c and
Fig. 3d), higher TTBC nodes concentrate along the high-speed Lyon ring road,
which thus represents one of the most important (and therefore critical) connect-
ing roads of the city, being traversed (in those time slots) by the largest number
of the weighted shortest paths. Similarly, some specific arterials traversing the
city center also appear as associated with higher TTBC. It is worth noting that
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(a) KNR-interpolated graph at 08:00 (b) Top-1000 nodes’ BC values at 08:00

(c) Execution time of W2C-Fast-BC vs
Brandes-BC at 08:00

(d) KNR-interpolated top-1000 BC percent-
age error at 08:00

Figure 5: The interpolated dynamic taxi graph: median-speed-to-max-speed
ratio at di↵erent hours of the day.

such critical roads change frequently, depending on the specific time slot, thus
unveiling high tra�c dynamics at morning peak hours.

3.4 Performance analysis

In this section, we exploit our W2CFastBC algorithm to perform static and
dynamic analysis of the metropolitan road network of the Rhone region, by
relying on the largest, KNR-interpolated, temporal graph (see Fig. 5a).

W2CFastBC is written in Scala with the Apache-Spark framework, leverag-
ing multi-core processing for parallel execution. Spark was configured to work
in the standalone cluster mode on two Intel Xeon E5 2640 2.4 GHz multi-core
machines, each equipped with 56 virtual cores and 128 GB of DDR4 RAM. All
the algorithms used for BC computation leverage 10 cores, by partitioning the
map-reduce tasks on two Spark workers, each equipped with 5 executors.

The top-1000 values of BC associated with this graph are reported in Fig. 5b.
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As it can be observed from Fig. 5c, the exact algorithm for computing BC on
the weighted graph requires a computation time of more than one hour, there-
fore unable to complete within the duration of the time slot, thus making the
computation of BC values at time slot 08:00 completely useless to provide any
knowledge (i.e., prediction of tra�c flows for the next time slot) that could
be exploited to inform travelers about congested roads. Conversely, our W2C-
Fast-BC computes in only 987 seconds (i.e., approximately 15 minutes), with a
largely tolerable percentage error of 0.8% over the top-1000 BC nodes. Simi-
lar results have been observed over the whole dynamic graph, thus proving the
adequacy of our solution for quasi real-time monitoring of dynamic, weighted
road-networks. The information derived from BC computation along with the
related possible reorganization of tra�c flows allow urban planners and man-
agers to perform what we call ahead monitoring, since it is possible to estimate
where tra�c is likely going to concentrate in the near future.

4 Future work

Our approach reduces BC computation time and allows real time monitoring of
transportation networks. Since an estimated version of BC could lead to a mis-
understanding of tra�c conditions, we are currently working on an exact version
of the algorithm that will be useful to precisely characterise the boundaries of
the error in the approximated approach and to identify e↵ective heuristics for
improving the accuracy.

Our future work also targets time-varying computation of BC on multi-
modal networks to have a more realistic representation of transport dynamics.
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