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1 Introduction

Quantitative measurement of crowding disutilities in public transport is important in investment

appraisals, demand modeling, and supply-side decisions such as fare optimisation. To this end, most

of the studies use a stated preference (SP) survey and estimate the traveller’s perceived value of

crowding in terms of a crowding multiplier – the ratio of value-of-travel-time under crowded and

uncrowded conditions (Wardman and Whelan, 2011). SP studies generally elicit preferences of riders

in a hypothetical route choice experiment and estimate discrete choice models (DCMs) to obtain the

crowding multiplier (See Bansal et al., 2019, for the review). Whereas the hypothetical bias is a major

limitation of the SP data, the required information to estimate DCMs (riders’ route preferences and

attributes of all available routes) is difficult to obtain using conventional revealed preference (RP)

surveys (Tirachini et al., 2016). Due to these challenges, early crowding valuation studies relying on

the RP data either deviated from DCMs (Kroes et al., 2014) or complemented the RP data with the

SP data (Batarce et al., 2015). However, the emerging use of smart cards for fare collection provides

an alternative way to collect the required RP data. Tirachini et al. (2016) first illustrated how smart

card data can be used for the crowding valuation of the Mass Rapid Transit users in Singapore. Along

the same lines, Hörcher et al. (2017) integrated the smart card data with the vehicle location data to

estimate the crowding multiplier of Hong Kong Mass Transit Railway (MTR) users.

We identify three research gaps in the crowding valuation literature. First, whereas dynamic

route preferences and learning behaviours are hard to capture in the SP experiments, previous RP

studies also rely on static choice models. Second, a regular subway user might not actively make a

compensatory route choice at every instance and can adhere to the same route until a bad experience

occurs, but such non-compensatory behaviour has not been modelled by any of previous studies.

Identification of such a non-compensatory choice process is crucial to avoid the overestimation of

the crowding multiplier. Third, crowding on a subway route is not uniform, but it is assumed to

be uniform in SP studies and aggregate measures are used in RP studies, without considering the

spread and order of crowded journey lags. The sensitivity of travellers’ route preferences (and thus,

crowding valuation) relative to the crowding distribution over a route, i.e. the cost of crowding

variability, remains an open question.

To address these gaps, we propose a dynamic latent class model (DLCM) which incorporates the

learning behaviour of riders using the instance-based learning theory (IBLT) (Tang et al., 2017;

Guevara et al., 2018), specifies compensatory and non-compensatory (i.e., inertia/habit) choice

processes of subway users as latent classes, and allows users to dynamically transition between these

classes based on the differences between the expected and the experienced level of services. Thus,

the proposed DLCM provides a comprehensive and general framework to model dynamic choices.

The resulting model turns out to be a new variant of the heterogeneous Hidden Markov Model

(HMM) where a rider’s choice at any instance not only depends on the rider’s current state (i.e., latent

class), but is also influenced by the rider’s lagged choice. The proposed model also accounts for the

unobserved heterogeneity in preferences of riders. We extend the expectation-maximization (EM)

algorithm for HMMs to estimate the proposed DLCM and also adapt the Viterbi algorithm to predict

the sequence of latent classes of a rider, conditional on her observed route choices (Arulampalam

et al., 2002).

We apply the proposed DLCM to estimate the crowding cost of Hong Kong MTR riders using a

four-month-long dynamic panel dataset on riders’ revealed route preferences (Hörcher et al., 2017).
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In doing so, we also explore whether crowding on the initial or the latter part of a trip is perceived

more burdensome by subway passengers and whether the overall spread of crowding levels matters.

This is the first such application in the crowding valuation literature.

We present experiment design in section 2, model formulation in section 3, estimation details in

section 4, and a Monte Carlo study in section 5. Results of the empirical study will be provided in the

full paper.

2 Implicit Experiment Design

We briefly discuss the RP experiment design (see Hörcher et al., 2017, for details). The selected

network of Hong Kong MTR has 32 origin-destination (O-D) pairs with exactly two competitive

paths between each O-D pair. These paths have enough variations in travel time and crowding,

circumventing the concern of the dominant alternative. The routes chosen by passengers and

attributes of routes are obtained by passing the day-to-day data on automated fare collection (AFC)

and vehicle location (AVL) through our passenger-train assignment algorithm. The key attributes

include travel time, the density of standing passengers, and the probability of standing. As fares

are not differentiated based on the route chosen, we derive crowding cost valuations in terms of

the equivalent travel time loss. Our dataset covers four months from two consecutive years, thus

allowing for numerous repeated route choice observations from uniquely identified (but otherwise

anonymised) smart card holders.

3 Model Formulation

The proposed DLCM has three components – initialisation model, transition model, and choice model.

The long panel data allows us to utilize the first few observations of riders to identify their initial

latent classes. We consider that a rider can choose to be in any of two latent classes (or hidden

states) at a choice occasion: 1) compensatory, 2) non-compensatory, i.e. inclined to make choices

due to habit or inertia. The rider’s class transition probabilities depend on the difference between

the expected and experienced level of service on the route chosen in the previous period. In the

choice model, conditional on the rider’s latent state and the lagged choice, the rider chooses a route

from a set of two routes. In what follows, we provide a contextual description of the DLCM for two

alternatives and two latent classes, but without loss of generality, it can be extended to any number

of alternatives and latent classes. For simplicity, we first describe transition and initialisation models,

followed by the choice model.

3.1 Transition Model

If rider i is in state s at time t, the utility Mi ts derived by her due to a mismatch between the expected

and the experienced level of service at the chosen route jt is:

Mi ts = mi ts + εi ts = ζ
>
s

�

Xi t jt −E(Xi t jt )
�

+ εi ts, (1)

where Xi t jt is a vector of attributes (i.e., travel time and crowding level) experienced by rider i on

chosen route jt at time t. We define expected values of these attributes E(Xi t jt ) using IBLT (Tang

2



et al., 2017):

E(Xi t jt ) =
∑

t ′
Wt ′ t Xi t ′ jt , t ′,τ ∈ {t − 1, t − 2, ...},

where Wt ′ t =
[t − t ′]−µ

∑

∀τ[t −τ]−µ
,

(2)

where µ is a decay parameter that captures the rate of forgetting the past experiences. Assuming

Gumbel distributed εi ts, transition probability expressions are:

P(si(t+1) = 1|si t = s;ζs,µ) =
exp (mi ts)

1+ exp (mi ts)
,

P(si(t+1) = 2|si t = s;ζs,µ) = 1− P(si(t+1) = 1|si t = s;ζs,µ),
(3)

If X includes the level-of-service attributes for which “less is better" (e.g., travel time, crowding),

we expect ζs to be positive. Intuitively, if the experienced level of service is poorer than that of the

expected at time t, a rider is more likely to make a compensatory choice (state 1) at t + 1.

3.2 Initialisation Model

Consider that we observe riders for TI + T periods. We use the first TI choices of riders to infer their

initial latent class probabilities. Similar to the transition model, we obtain the latent class probabilities

of the rider after t = TI based on the differences between the experienced and expected level of

service on the chosen route at t = TI .

KiTI
= kiTI

+ εiTI
= ζ>0

�

ZiTI jTI
−E(ZiTI jTI

)
�

+ εiTI
,

P(si(TI+1) = 1;ζ0,µ) =
exp

�

kiTI

�

1+ exp
�

kiTI

� ,

P(si(TI+1) = 2;ζ0,µ) = 1− P(si(TI+1) = 1;ζ0,µ),

(4)

Note that the first TI − 1 choices of the rider are mainly used to compute the expected level of

service E(ZiTI jTI
) for the route chosen by the rider at t = TI . The expectation is computed using

equation 2. If we shift the time clock by TI periods, the latent class at t = TI + 1, the choice at t = TI ,

the choice at t = TI + 1 correspond to the latent class at t = 1, the choice at t = 0, and the choice at

t = 1, respectively. We do not include the first TI choices of the rider in the choice model and thus,

equation 4 provides the initial latent class probabilities P(si1;ζ0,µ).

3.3 Choice model

If rider i is in the compensatory state at time t (i.e., si t = 1), her utility from choosing route j at time

t is:

Ui t j = Vi t j + νi t j = γ
>E(Fi t j) +χ

>
i E(Gi t j) + νi t j , where χi ∼ Normal(%,Ψ) (5)

We consider that the marginal utility associated with attributes Fi t j do not vary across riders, but

preference heterogeneity is present for attributes Gi t j. The expected value of attributes is obtained
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using equation 2. If a rider is in the compensatory state at time t, she is less likely to choose the same

route at time t as chosen at t −1. We can further account for this behaviour by modifying the indirect

utility equation for the first route:

Ui t1 = Vi t1 +λ11[yi(t−1) = 1]−λ21[yi(t−1) = 2] + νi t1 (6)

where 1[.] is an indicator function and the estimable parameters are Π = {γ,%,Ψ,µ,λ1,λ2}. Note

that λ1 and λ2 are likely to be negative because they control the inherent aversion for choosing the

same route. Considering Gumbel distribution on νi t j, the route choice probabilities given that the

passenger i is in the compensatory state at time t is:

P(yi t = 1|si t = 1, yi(t−1);Π) =
exp

�

Vi t1 +λ11[yi(t−1) = 1]−λ21[yi(t−1) = 2])
�

exp
�

Vi t1 +λ1(1[yi(t−1) = 1]− 1[yi(t−1) = 2])
�

+ exp (Vi t2)

P(yi t = 2|si t = 1, yi(t−1);Π) = 1− P(yi t = 1|si t = 1, yi(t−1);Π)

(7)

where yi t is the route chosen by rider i at time t. Similarly, we now define the route choice

probabilities if rider i is in non-compensatory state at t (i.e., si t = 2):

P(yi t = 1|si t = 2, yi(t−1);λ3,λ4) =
exp

�

λ31[yi(t−1) = 1]−λ41[yi(t−1) = 2]
�

exp
�

λ31[yi(t−1) = 1]−λ41[yi(t−1) = 2]
�

+ 1

P(yi t = 2|si t = 2, yi(t−1);λ3,λ4) = 1− P(yi t = 1|si t = 2, yi(t−1);λ3,λ4)

(8)

We would expect λ3 and λ4 to be highly positive because the passenger is likely to make the same

choice in two consecutive scenarios due to inertia or habit.

4 Model Estimation

By combining all three components of the model and using the notations of HMMs, we write the

conditional likelihood of the model:

P(yi1, . . . , yiT |X ,Z, F ,G;Θ) =
2
∑

s1=1

2
∑

s2=1

· · ·
2
∑

sT=1

T
∏

t=1

P
�

yi t |qi tst
= 1, yi(t−1)

�

︸ ︷︷ ︸

Choice Model

P(qi1s1
= 1|Inputs)

︸ ︷︷ ︸

Initialisation Model

. . .

. . .
T
∏

t=2

P(qi tst
= 1|qi(t−1)s(t−1)

= 1)

︸ ︷︷ ︸

Transition Model

(9)

where qi ts is 1 if the passenger i belongs to state s, else it is zero. The model parameters are

Θ =
�

µ,ζ0,ζ1,ζ2,γ,%,Ψ,λ1,λ2,λ3,λ4

	

. Figure 1 shows the schematic diagram of the proposed

DLCM model. The proposed specification is a variant of the traditional heterogeneous hidden Markov

models because conditional on the hidden state (i.e., latent class), choice probabilities also depend

on the lagged choice.
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Figure 1: The dynamic latent class model

4.1 Expectation-Maximization (EM) Algorithm

The EM algorithm was originally developed to deal with the missing data problem. The DLCM

likelihood maximisation problem also falls under the same category because latent classes can be

treated as the missing data. The EM algorithm is a two-step iterative algorithm where the conditional

expectation of the missing data is obtained in the E-step and then the complete loglikelihood is

maximised in the M-step to update the model parameters. The convergence criterion is defined based

on the difference in parameter estimates or loglikelihood values of two consecutive iterations.

Assuming latent classes as missing variables, we write the complete likelihood Lc and the complete

loglikelihood Lc of the model:

Lc = P(y1, . . . , yT , s1, . . . , sT ;Θ)

=

� N
∏

i=1

T
∏

t=1

2
∏

s=1

�

P
�

yi t |qi ts = 1, yi(t−1)
��qi ts

�� N
∏

i=1

2
∏

s=1

[P(qi1s = 1|Inputs)]qi1s

�

. . .

. . .

� N
∏

i=1

T
∏

t=2

2
∏

s=1

2
∏

r=1

�

P(qi ts = 1|qi(t−1)r = 1)
�qi tsqi(t−1)r

�

(10)

Lc = log Lc =

� N
∑

i=1

T
∑

t=1

2
∑

s=1

qi ts log
�

P
�

yi t |qi ts = 1, yi(t−1)
��

�

. . .

· · ·+

� N
∑

i=1

2
∑

s=1

qi1s log [P(qi1s = 1|Inputs)]

�

. . .

· · ·+

� N
∑

i=1

T
∑

t=2

2
∑

s=1

2
∑

r=1

[qi tsqi(t−1)r] log
�

P(qi ts = 1|qi(t−1)r = 1)
�

�

(11)

4.1.1 E-step

Based on the complete loglikelihoodLc expression, the E-step in (k+1)th iteration requires computing

the following expectations:

πk+1
i ts = E[qi ts|yi;Θ

k] = P[qi ts = 1|yi;Θ
k]

ωk+1
i t rs = E[qi tsqi(t−1)r |yi;Θ

k] = P[qi tsqi(t−1)r = 1|yi;Θ
k]

(12)
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To compute expectations in the E-step efficiently, we define forward (αi ts) and backward (βi ts)

variables:

αi ts(Θ) = P(yi1, . . . , yi t , qi ts = 1;Θ)

βi ts(Θ) = P(yi(t+1), . . . , yiT |yi t , qi ts = 1;Θ)
(13)

We then compute the πk+1
i ts and ωk+1

i t rs in terms of forward and backward variables using the Bayes

theorem.

4.1.2 M-step

After computing πk
its and ωk

it rs in the E-step, the complete loglikelihood is maximised to obtain the

parameters for (k+ 1)th iteration .

Θk+1 = argmax
Θ

� N
∑

i=1

T
∑

t=1

2
∑

s=1

πk
its log

�

P
�

yi t |qi ts = 1, yi(t−1)
��

+
N
∑

i=1

2
∑

s=1

πk
i1s log [P(qi1s = 1|Inputs)]

+
N
∑

i=1

T
∑

t=2

2
∑

s=1

2
∑

r=1

ωk
it rs log

�

P(qi ts = 1|qi(t−1)r = 1)
�

�

(14)

4.2 Sequence of Latent Classes

We use the Viterbi algorithm to estimate the most likely sequence of a rider’s latent classes, condi-

tional on the sequence of observed route choices. This algorithm uses forward-backward recursion

(Arulampalam et al., 2002; Forney, 1973; He, 1988). Once we condition on the lagged choices in the

recursion, the Viterbi algorithm for the heterogeneous HMMs can be used for the proposed DLCM.

5 Monte Carlo Study

To validate the model and properties of the EM estimator, we present an instance of a Monte Carlo

study.1. We consider two data generating processes: i) with no preference heterogeneity; ii) with

preference heterogeneity in the choice model. In both DGPs, we generate each component of

explanatory variables {X ,Z, F ,G} by taking draws from a normally-distributed random variable with

mean 1.5 and standard deviation 0.3. We utilize the first ten choices (i.e., TI = 10) of a rider to

initialize the model and assume that the rider develops expectation for the level of service on a

route based on her past three trips on that route. In both DGPs, we consider the memory parameter

of the IBLT µ to be 1. We consider 3000 riders (i.e., N = 3000) and 120 observations per rider

(i.e., T + TI = 120) for the first DGP, but these values are 2000 and 30, respectively, for the second

DGP. In the second DGP, we consider a diagonal variance-covariance matrix on random parameters.

The algorithm terminates when the difference between the loglikelihood values of two consecutive

iterations is below 10−6.

1Since standard errors are calculated using the regular asymptotic theory, we don’t repeat the Monte Carlo study on
multiple resamples
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Table 1: Results of the Monte Carlo Study with Unobserved Heterogeneity

True value Estimated value Std. err. t-stat Gradient at convergence
Initialisation
ζ1

0 -1.0 -1.07 0.089 -12.0 2.77E-04
ζ2

0 1.1 1.21 0.213 5.7 2.30E-05
ζ3

0 0.9 0.84 0.204 4.1 2.70E-05
Transition Model (class 1)
ζ1

1 -1 -1.01 0.046 -21.7 6.40E-03
ζ2

1 1.4 1.36 0.087 15.7 4.67E-04
ζ3

1 1.5 1.33 0.085 15.6 4.44E-04
Transition Model (class 2)
ζ1

2 -1.5 -1.52 0.050 -30.5 1.71E-02
ζ2

2 1.2 1.22 0.048 25.4 1.28E-03
ζ3

2 1.1 1.13 0.045 25.3 1.02E-03
Choice Model (Class 1)
λ1 -1.0 -0.97 0.085 -11.5 4.35E-04
λ2 -2.0 -2.02 0.173 -11.7 5.72E-04
γ1 -1.0 -0.91 0.115 -7.9 4.53E-03
γ2 -1.5 -1.59 0.152 -10.5 7.56E-03
Choice Model (Class 2)
λ3 1.0 0.99 0.023 43.2 9.05E-04
λ4 2.0 1.98 0.055 35.8 3.02E-03

Table 2: Results of the Monte Carlo Study with Unobserved Heterogeneity

True value Estimated value Std. err. t-stat
Gradient at
convergence

Initialisation
ζ1

0 -1.0 -1.08 0.14 -7.76 3.25E-03
ζ2

0 1.1 1.34 0.27 4.90 1.30E-04
ζ3

0 0.9 0.76 0.27 2.86 9.00E-05
Transition Model (class 1)
ζ1

1 -1.0 -1.05 0.14 -7.76 1.09E-02
ζ2

1 1.4 1.68 0.34 4.95 8.27E-04
ζ3

1 1.5 1.81 0.34 5.38 3.01E-04
Transition Model (class 2)
ζ1

2 -1.5 -1.63 0.13 -12.91 4.02E-02
ζ2

2 1.2 1.22 0.13 9.35 1.48E-03
ζ3

2 1.1 1.21 0.14 8.73 1.34E-03
Choice Model (Class 1)
λ1 -1.0 -0.84 0.24 -3.56 6.31E-03
λ2 -2.0 -1.98 0.36 -5.52 7.48E-03
γ1 -1.0 -1.05 0.32 -3.30 9.28E-04
γ2 -1.5 -1.71 0.38 -4.55 8.66E-04
%1 1.5 1.46 0.27 5.36 -1.31E-03
%2 -1.5 -1.62 0.30 -5.35 1.66E-03
Ψ11 1.0 0.89 0.77 1.15 1.42E-03
Ψ22 1.0 1.25 0.70 1.78 1.91E-03
Choice Model (Class 2)
λ3 1.0 0.93 0.05 18.63 3.38E-03
λ4 2.0 1.86 0.11 17.24 1.44E-02
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Tables 1 and 2 present estimation results for both DGPs. In both tables, superscript on variable

relates to the component number of the vector. For example, ζ2
0 implies the second element of the

vector ζ0. A comparison of true and estimated values of parameters indicate that all model parameters

are recovered well. Gradient values at convergence are also close to zero for all parameters in both

DGPs, which ensure the convergence of the EM to a local optimal. Since true latent classes (or hidden

states) of riders are known in the DGP, we could analyse the performance of the Viterbi algorithm in

predicting hidden states. The results indicate that the Viterbi algorithm could predict latent states

correctly at 84.2% and 84.8% accuracy in both DGPs, respectively.

References

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for

online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–

188.

Bansal, P., Hurtubia, R., Tirachini, A., and Daziano, R. A. (2019). Flexible estimates of heterogeneity

in crowding valuation in the new york city subway. Journal of Choice Modelling, 31:124–140.

Batarce, M., Muñoz, J. C., de Dios Ortúzar, J., Raveau, S., Mojica, C., and Ríos, R. A. (2015). Use of

mixed stated and revealed preference data for crowding valuation on public transport in santiago,

chile. Transportation Research Record, 2535(1):73–78.

Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278.

Guevara, C. A., Tang, Y., and Gao, S. (2018). The initial condition problem with complete history

dependency in learning models for travel choices. Transportation Research Part B: Methodological,

117:850–861.

He, Y. (1988). Extended viterbi algorithm for second order hidden markov process. In [1988

Proceedings] 9th International Conference on Pattern Recognition, pages 718–720. IEEE.

Hörcher, D., Graham, D. J., and Anderson, R. J. (2017). Crowding cost estimation with large scale

smart card and vehicle location data. Transportation Research Part B: Methodological, 95:105–125.

Kroes, E., Kouwenhoven, M., Debrincat, L., and Pauget, N. (2014). Value of crowding on public

transport in île-de-france, france. Transportation Research Record, 2417(1):37–45.

Tang, Y., Gao, S., and Ben-Elia, E. (2017). An exploratory study of instance-based learning for route

choice with random travel times. Journal of choice modelling, 24:22–35.

Tirachini, A., Sun, L., Erath, A., and Chakirov, A. (2016). Valuation of sitting and standing in metro

trains using revealed preferences. Transport Policy, 47:94–104.

Wardman, M. and Whelan, G. (2011). Twenty years of rail crowding valuation studies: evidence and

lessons from british experience. Transport reviews, 31(3):379–398.

8


	Introduction
	Implicit Experiment Design
	Model Formulation
	Transition Model
	Initialisation Model
	Choice model

	Model Estimation
	Expectation-Maximization (EM) Algorithm
	E-step
	M-step

	Sequence of Latent Classes

	Monte Carlo Study

