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INTRODUCTION  
 
A persistent problem in using Stated Choice (SC) methods is that respondents often adopt decision 
processes that deviate from the assumption that individuals evaluate all the attributes presented in 
a compensatory way. As recently summarized by Cherchi and Hensher (2015), when respondents 
are “presented with a complex task, it is likely that they show disengagement, adopting simplifying 
strategies to reduce the mental effort required solving the problem. On the other hand, simplified 
survey tasks can be seemingly perceived as unrealistic by the respondents, leading to problems 
with respondents’ engagement, or respondents choosing based on other attributes not included in 
the design”. A body of literature has tried to incorporate different decision heuristics in the demand 
models, but this has often led to indistinguishable effects (see González-Valdés and Ortúzar, 
2018). A growing literature on SC experiments has then focused on the problem of the decision 
process. Evidence, mainly based on model estimation results, shows that the attribute processing 
strategies adopted by respondents depends not only on the number of attributes and their levels but 
also on the importance and relevance of the attributes presented.  

In an attempt to better understand how individuals make decisions, many researchers have 
recently used eye tracking technology to identify which visual information respondents pay 
attention to when making decisions (e.g., Balcombe et al., 2014, Krucien et al., 2014; Cherchi and 
Raja, 2016; Uggeldahl et al., 2016; Meißner et al., 2016; Cherchi, 2018; Yang et al., 2015). This 
is a promising area of research, but at the moment, these papers mostly look at different effects of 
visual attention on the decision process. However, the critical assumption of eye movements do 
not always hold as people can attend and process visual information that they are not currently 
fixating on. Moreover making complex decisions involves executive functions such as working 
memory, inhibition and cognitive flexibility (Diamond, 2013) that are not captured by eye-
movement data by themselves. A better understanding of these functions may be revealed using 
electroencephalography (EEG). This technique measures electrical potentials from the scalp with 
very high temporal resolution. The potentials reflect activation of different brain structures, which 
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are known to be involved in executive functions, such as regions of the frontal or parietal cortex 
(Voigt et al., 2019). EEG measures in transport studies have been used mainly to study driving 
behaviour using driving simulators (e.g., Roman et al., 2001; Hernández et al., 2018; Park et al., 
2018), and in some cases to study location functions and happiness in real environment to study 
(Mavros et al., 2016; Tilley et al., 2017). EEG has also been used to predict consumer choices and 
preferences (Avinash et al., 2018; Hakim & Levy, 2019; Golnar-Nik et al., 2019; Khushaba et al., 
2012). In the current study, we aim to provide preliminary evidence that complex consumer 
choices depends on cognitive processes and executive functions (Diamond, 2013) that may not be 
fully captured by current SC approaches. To address this gap, here we combine the standard SC 
experiment with EEG recordings while manipulating the cognitive demands of the task. Our study 
is applied to the choice context of a car purchase between a petrol and an electric vehicle.  

 
 
We then modelled people’s choice behaviours in easy and hard decisions, and compared 

this analysis of their choice behaviour to their EEG responses in these two conditions. Based on 
previous work, we predict that hard decisions would lead to higher cognitive demands and larger 
EEG responses in electrodes on the frontal part of the scalp (Avinash et al., 2018; Hakim & Levy, 
2019; Golnar-Nik et al., 2019; Khushaba et al., 2012). These demands can lead to choices 
inconsistent with the compensatory assumptions.  
 
 
DATA COLLECTION METHODOLOGY 

Our SC experiment consisted of a binary choice between an electric vehicle (EV) and an 
internal combustion vehicle (ICV) with the addition of a “neither of them” option. Five attributes 
were chosen to characterise the alternatives presented. These were purchase price, driving costs, 
driving performance (range), environmental effects (CO2 emissions) and the EV market share. The 
first four attributes represent the most significant attributes in the choice of EVs, according to the 
vast literature on EV. The last attribute, the EV market share, is not common in EV studies nor in 
SC experiments. It is taken from Cherchi (2017) and is a measure of descriptive norms, i.e., the 
influence that the action (or choice) of other people has on the individual’s choice. Information 
about the recharging station in UK was provided before starting the SC experiment, along with a 
link to the UK official webpage on the available network. Respondents were also carefully selected 
to guarantee that the information provided were realistic for them. 

The levels of all the attributes were pivoted around the actual values of purchasing prices, 
driving costs, ranges and emissions of the UK car market, as well as the current market penetration 
of EVs. Following some pilot testing, for the EV market share we decided to include both the total 
number of new EV registration in 2019 in the UK and the percentage of new EV registered 
compared to the total number of cars registered in the same year. This differed from our previous 
work (Cherchi, 2017).  

The SC experiment was customised based on the car size that respondents intended to buy 
within the next 5 or 10 years or the last car purchased in the household. In order to ensure that the 
prices range displayed in the SC experiment was realistic, respondents were also asked to indicate 
the range of prices for their next or past purchase. Three ranges were defined, corresponding to a 
small, medium or large car. Some screening information was collected to guarantee realism. In 
particular, respondents needed to have a drive licence, and they had to live in an area where it is 
realistic to install a recharging station at home.  
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One strong assumption in the SC research, based on economics principles, is that 
respondents evaluate all the attributes presented, weigh them, and compute an overall benefit for 
each alternative they are given. Their stated choice is then predicted to be based on these benefits. 
According to these models, choice behaviours would not depend on the cognitive demands of the 
task. However, from a cognitive point of view, the stages in the decision process can be very 
demanding for complex choices such as choosing a type of car because there are many different 
attributes to weigh when trying to decide which type to purchase. We therefore first manipulated 
the difficulty of the choice scenarios to manipulate cognitive demands. An orthogonal design was 
built, accounting only for main effects, for a total of 16 choice scenarios. Using priors available 
from previous studies, simulated scenarios were built in a way to ensure that roughly in 8 scenarios 
the probabilities to choose EV and ICV were within 39% and 59% (we defined these cases as 
“hard” scenarios). and in the other 8 scenarios were higher that 59% or lower than 39% (we defined 
these cases as “easy” scenarios).  

The survey was first implemented online in SurveyEngine. Other than the SC experiment, 
the survey included several questions about the number and type of cars available in the household, 
the specific car most used by the respondent, the purpose this car was most used for, and the 
kilometres driven daily as well as socio-economic characteristics. Finally, a set of attitudinal 
questions was asked, measuring attitudes toward environment and injunctive norms. The 
statements were taken from Cherchi (2017). A sample of 118 participants was randomly selected 
from members of a panel, trying also to match the gender, age and education balance.  
 
EEG Study  

After completing the online survey Twenty participants from the larger sample were invited 
to participate in the EEG follow-up experiment. Participants completed the same SC experiment 
in the laboratory while we recorded EEG responses. Participants complete two blocks of the SC 
task, with a break between blocks. The 16 scenarios for each participant’s preferred car size were 
presented in a random order on each block for a total of 32 trials. This ensured that there were a 
sufficient number of trials in each condition for a high signal-to-noise ratio in the EEG data. 
Approximately half the participants received information about the EV on the left column and half 
on the right (matched to how the information was presented to that participant on the online 
survey). They sat approximately 50 cm from the computer monitor. On each trial, they were shown 
a white fixation cross on a grey background for 1 sec, followed by a 0.5 sec grey screen, followed 
by a choice scenario for 35 sec. The scenario was then replaced by a blank grey screen for 1 sec, 
followed by a grey response screen with the three possible responses indicated in white text 
(“electric”, “neither”, “petrol”). Participants responded by pressing the arrow key corresponding 
to their choice on the numeric keypad with the right hand. There was a 2-sec grey screen following 
the response before the next trial began. The experiment was synchronised to the EEG recording 
by sending an event marker on the onset of each choice scenario. The event marker coded the 
condition (easy or hard).  
 
DATA ANALYSIS AND RESULTS 

The EEG data were analysed off-line using EEGLAB (version 2019; Delorme & Makeig, 
2004). For each participant, the data were resampled to 250 Hz (to speed up analyses), band-passed 
filtered with frequency cut-offs of 0.3 and 30 Hz, and segmented into 25-sec easy and hard epochs 
relative to the onset of the choice scenario (32 epochs total). Next, an independent component 
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analysis (ICA) was run on the epoched data separately for each condition, and components related 
to eye blinks, eye movements and muscle artefacts were manually rejected. 

A fast Fourier transform (FFT) was used to compute the power spectral density (PSD) for 
each electrode and epoch on the pre-processed and cleaned EEG data. The PSD reflects the power 
at each frequency between 0.3 and 30 Hz. The median PSD was calculated across epochs 
separately for each condition to allow for comparisons between easy and hard choice scenarios. 
Following previous studies (Avinash et al., 2018; Hakim & Levy, 2019; Golnar-Nik et al., 2019; 
Khushaba et al., 2012), we focused on frontal, central and parietal clusters of electrodes in the left 
and right hemispheres. For each cluster, we averaged the power across the electrodes in that region. 
The power data were submitted to analyses of variance (ANOVAs) with the factors: cluster, 
frequency band and condition. For all statistical analyses, an alpha = .05 was used as the 
significance level and partial-eta-squared as a measure of effect size (0.06 to 0.14 considered 
medium effect size, and > .14 considered large effect size). 

Figure 2 shows the mean EEG power (averaged across participants) for each frequency band, 
cluster and condition. Most of the power in all clusters is concentrated in the slow delta band, and 
power was highest in frontal clusters. We submitted the power data to a separate ANOVA for each 
frequency with cluster (frontal, central, parietal; averaged across hemisphere) and condition (easy, 
hard) as repeated measures. There was a large main effect of cluster for all frequency bands (delta: 
F(2,38) = 17.83, p < .001, partial-eta-squared = .48; theta: F(2,38) = 21.57, p < .001, partial-eta-
squared = .53; alpha: F(2,38) = 24.93, p < .001, partial-eta-squared = .57; beta: F(2,38) = 43.50, p 
< .001, partial-eta-squared = .70). The condition factor was marginally significant for the slower 
delta bands, and it was significant for the faster alpha and beta bands. Previous studies suggested 
that power in frontal theta band could be used to predict consumer decisions and preferences, as 
frontal brain regions are thought to be involved in complex decision making (Avinash et al., 2018; 
Hakim & Levy, 2019; Golnar-Nik et al., 2019; Khushaba et al., 2012). In line with these studies, 
there was some indication that power differences between trial types were more enhanced for 
frontal compared to the other electrode clusters for the theta bands. 

Our preliminary results suggest that more difficult decisions can recruit higher oscillation 
frequencies (e.g., beta) which may play a role in helping people bind information. Previous work 
showed that theta power in frontal electrodes play an important role in reflecting consumers’ 
preferences for a product (e.g., Golnir-Nik et al., 2019). Although not significant in the current 
study, we found a similar trend that frontal theta power can reflect consumers’ preferences when 
they had more than one alternative to choose from, which require them to weigh the attributes 
across both alternatives. Further investigation is needed as some of the findings approached 
significance and effect sizes were in the medium to large range (partial-eta-squared > 0.06). 
Furthermore, electrical potentials measured at any one position on the scalp reflect summed 
activities across several cortical regions so the cortical sources of EEG signals cannot be resolved 
exactly. These sources can be estimated from EEG signals  but future studies can use a similar SC 
experiment with functional magnetic resonance imaging to more accurately localise the specific 
brain regions involved.  
 
Analyses of the discrete choices 

We first compared the distribution of the choices from the sample online and the sample who 
did the SC experiment in the lab with the EEG. First we note that the distribution of the choices in 
the online sample reflect the distribution assumed in the SC experiment. The choices split almost 
equally between the EV and ICV, for all car classes, when the tasks were hard, while there is a 
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marked preference for EV for small and medium cars (and for ICV for large car) when the tasks 
were easy. Interestingly, this is not the case when respondents performed the same experiment in 
the lab with EEG. In particular, results are opposite for the easy tasks, small cars, where 
respondents prefer ICV more than EV cars. The case with hard tasks, however, is the one that 
shows the most striking difference, with respondents clearly preferring ICV for small cars and EV 
for large cars. We note that this effect is the same if we consider only the first 8 choice scenarios 
presented, or all 32 scenarios. We can safely rule out the assumption of fatigue, learning or practise 
effect in the analysis of these results (recall that in the online survey, each respondent evaluate 8 
choice scenarios, while in the lab experiment 32). Finally, we note the number of time the 
alternative “none” was chosen in the lab experiment is significantly lower than in the online 
experiment.  

We then compared individual preferences estimated using the stated choice data collected 
online (table 1). The first column (labelled “full experiment”) reports the results from the entire 
dataset, while the other two columns report the results specification estimated using only the tasks 
classified as “easy” and as “hard”. The model structure used in this paper is a mixed logit model 
typically used to model choices among a set of discrete and mutually exclusive alternatives. Mixed 
logit models are grounded on the concept of rationality that assumes that individuals possess a 
mental order of preferences that allow them to have perfect information about all the available 
options and the possible consequences of their actions. Mixed logit models rely on the concept of 
utility, i.e. a unique index that summarises the level of satisfaction received from the eventual 
choice of each alternative, implicitly assumes the concept of trade-off among attributes, i.e. that a 
bad attribute can be compensated by a good attributes.  

We can see that all coefficients have the expected sign, in agreement with the microeconomic 
theory. As expected, the purchase price is the most relevant attribute in the choice of the vehicle, 
followed by the range. In line with the literature on discrete choice models, panel effect is highly 
significant and reveals also the presence of significant random heterogeneity in the preference for 
EV and ICV.   

The model estimation highlighted differences in participants’ choice behaviours between the 
easy and hard tasks. In the model estimated with only the easy tasks, purchase price and range 
became slightly more significant, and in particular the preference for the range double, while CO2 
emission became slightly less significant and the descriptive norms takes a wrong sign (though not 
significant). Thus, it seemed that respondents were still engaged for easy decisions, but they had a 
tendency to focus more on few key attributes. The model estimated with only the hard tasks, on 
the other hand, revealed a clear deviation from the predicted compensatory behaviour. None of the 
attribute, not even the purchase price and the range, is significant at 95%. More analyses are 
required to identify if there are simplifying strategies behind these choices. At the moment, it 
seems that the decision process is almost random.  

Overall the model estimation results suggest that participants were not equally using the 
same attribute values in the easy and hard tasks, and so additional factors may be involved. In line 
with this interpretation, our preliminary EEG results suggest that people may use executive 
functions differently for easy and hard decisions. That is, hard tasks, which we constructed to 
require more cognitive demands, may engage more executive functions as reflected by increased 
frontal power and increased binding and manipulation of information as reflected by increased 
power in the beta frequency band. 

 
Table 3 Model estimation results  
 Full experiment Easy tasks Hard tasks 
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CONCLUSIONS 
Our preliminary results confirm that hard decisions lead to higher cognitive demands and larger 
EEG responses in electrodes on the frontal part of the scalp and these demands can lead to choices 
inconsistent with the compensatory assumptions. In the SC literature, it is recommended that the 
tasks should not be too easy, otherwise the choice would not be informative in terms of the trade-
off between attributes; but not too complex, otherwise respondents may find the task too difficult 
and so their choices may not be based on trading-off the attributes. Both our behavioural and neural 
findings support this recommendation.  

It is important to note that the definition of hard and easy tasks carry a certain degrees of 
arbitrariness. It depends on the actual levels presented and how similar respondents perceived 
those levels. Finally, it is important to stress that an easy choice does not necessarily imply that 
one alternative is dominant over the other. We did not have any dominant alternatives in our 
experimental design. 
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