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Abstract

Although the idea of vehicle sharing systems (VSSs) emerged back in 1940s,
sustaining such a system became simpler with the improvements in tech-
nology in the past decade. In addition to that, people have become more
concerned about environmental effects and try to find solutions on reducing
emission and energy consumption. On the other hand, VSSs require effort
to make them profitable. In this paper, we focus on the two of the oper-
ational level challenges, which are the demand forecasting and routing for
the rebalancing operations, in a one-way station-based bike sharing system
(BSS). Since the data collection is exhaustive and costly, we would like to
find the answer to whether it is worth to collect data and develop demand
prediction models. In order to do that, we create a simulation of a city BSS
in operation during the day. Then, using a mathematical model from the
literature, we assess the rebalancing costs under two scenarios: one where
we assume the perfect demand forecast, and the other where the future de-
mand is unknown. By this way, we determine the trade-off between the lost
demand and the rebalancing cost under the mentioned scenarios, and assess
the benefit of forecasting the demand. Lastly, we present a case study on the
Swiss BSS named PubliBike.

Keywords: Transportation, Bike sharing systems, Forecasting,
Rebalancing operations

1. Introduction

The idea of sharing vehicles arose in the late 1940s with cars. The first
known CSS, Selbstfahrergemeinschaft, was initiated in Zurich, Switzerland,
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in 1948 [1]. This attempt was more because of convenience than of prof-
itability. The idea came up again in the early 1970s. After the first attempts
that took place in Amsterdam and France, which were mostly based on the
economic and environmental reasons, profit-based companies saw the oppor-
tunity in these systems and invested money [1, 2]. Consequently, not only
user convenience but also the profitability of the company also became an
issue to discuss. These conflicting objectives attracted the research commu-
nity’s attention and the focus on sharing systems increased substantially.

A VSS has several kinds of configurations. The type of trips can be either
return or one-way. In the former, the user is supposed to drop the vehicle
off to the pick-up station after the usage. The latter, on the other hand,
allows the user to park anywhere designed in the city. One-way trips are
much more flexible from the user perspective, however, it brings the problem
of imbalance. The vehicles tend to be accumulated in the stations or areas
which are mainly trip destinations, which often causes a lack of vehicles in
the frequent trip origins.

To overcome imbalance, the operators introduce rebalancing operations
which relocate the vehicles from stations with high availability and low de-
mand to the stations with high demand and low availability to satisfy user
demand at a higher level. The rebalancing operations might take place at a
different time of the day in different VSSs. Static rebalancing is done when
there is the least demand, generally during the night, every day. Dynamic
rebalancing, on the other hand, is flexible and executed throughout the day.
Moreover, in some VSSs the rebalancing is done by the staff relocating the
vehicles or by staff using relatively big vehicles, e.g. trucks, which carry the
vehicles.

In order to be able to rebalance vehicles which improves the level of ser-
vice, the operators aim to forecast the demand for the following time steps.
This lets the operator to anticipate the demand in order to perform rebal-
ancing in due time. This close relationship between the demand forecasting
and rebalancing operations leads us to further examine the trade-off between
them. In this work, we aim to provide a framework that incorporates these
two aspects of a VSS and analyze the added value of demand forecasting.

The rest of the paper is organized as follows: Section 2 reviews the existing
literature on rebalancing operations and demand forecasting in particular.
Then, the proposed methodology is discussed in Section 3 and the results
on a case study are presented in Section 4. Finally, Section 5 concludes the
paper.
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2. State of the art

In this section, we talk about the studies that belong to our context. A
brief literature review on the rebalancing operations is presented in Section
2.1 and on the demand forecasting in Section 2.2.

2.1. Literature on rebalancing operations

The most of the research was based on static rebalancing operations.
One of them was addressed by [3] under the setting of station-based BSSs.
The stations had docks for bikes, which implies that they were capacitated.
The research question is how to apply static rebalancing operations in the
defined system. To do that two mixed integer linear programming (MILP)
formulations are developed, which are extensions to one-commodity pickup
and delivery traveling salesman problem (1-PDTSP). Valid inequalities and
dominance rules are proposed for these formulations. The objective function
is minimizing the operating costs. In addition to that, it takes the user satis-
faction into account as well as the loading and unloading times. The authors
in [4] present a solution method for the same problem using a constraint
programming (CP) approach.

Another approach for the static rebalancing with capacitated vehicles was
introduced in [5]. To solve this problem the authors present four MILP for-
mulations. These models are strengthened by introducing valid inequalities.
Furthermore, because of the exponential number of constraints, tailor-made
branch and cut algorithms are developed. Although the approach taken to
the problem was not innovative, introduction of different formulations and
allowing relocation vehicles to do both pick up and drop off at stations in
one route contributed the literature.

As opposed to operator-based rebalancing operations, it is also possible
to keep the balance of the system using user-based operations. In order to
encourage users to rebalance the system, dynamic pricing in which one’s trip
characteristics, such as origin, destination, time of the day, and trip duration,
are also taken into account while determining the price can be used. Such
a work was conducted in [6], on a one-way CSS. This system uses pricing
incentives to encourage users to rebalance the system. The level of service
(LOS), which is the ratio of number of served users and the number of vehicle
requests, is used as a measure to evaluate the performance of the system.
The authors propose a simulation-based optimization approach, where the
optimization module determines the optimal thresholds of available vehicles
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at which the incentives should be introduced, while the simulation module
evaluates the stochastic user response to the offered incentives and how the
CSS operates.

The pure user-based rebalancing strategies might not be enough to keep
the balance of the system at the desired level and still need the operator-
based operations. In [7], the authors aim to combine the dynamic pricing and
dynamic online rebalancing operations in a station-based BSS. A predictive
model is used to see the future demand. For the routing algorithm, they use
a time-expanded network (as in [8]) and develop a mixed integer quadratic
program (MIQP). This solution is provided only for the single-truck and a
heuristic is proposed for the multi-truck case.

We see from the literature that the rebalancing operations are essential
to keep the balance regardless of the kind of vehicles used in the system.
Mathematical models, simulation, heuristics and metaheuristics are utilized
to propose a solution to rebalancing operations. The reader may refer to
more thorough literature surveys in [9, 10].

2.2. Literature on demand forecasting

One of the research questions related to demand forecasting was to iden-
tify the important factors of the corresponding VSS. In works [11, 12], the
authors consider a station-based BSS. In [11], the authors aim to understand
the bike count’s behavior by including the weather conditions. Two models
are developed based on Poisson Regression Model (PRM) and Negative Bi-
nomial Regression Model (NBRM). In [12], the authors use the data related
to weather conditions, temporal variables, station attributes, socio-economic
characteristics of the users to analyze the number of pick-up and drop-offs.
Since traditional linear regression assume independence between the obser-
vations, they use the random intercept multilevel modeling to identify the
factors affecting the ridership.

The regression models were not the only methodology used to forecast
the demand. For example, in [3, 4], the authors include a Markov chain
structure to estimate the number of vehicles per station in the steady state.
On the other hand, the authors in [13] start by creating a data set which
identifies the user arrivals and departures per station, as well as rebalanc-
ing operations. Authors test assumptions about the factors that influence
customer arrivals and departures and rebalancing refill and removal. They
apply a methodology for analyzing such systems using behavioral models,
in particular, autoregressive moving average (ARMA) models. Finally, they
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present the first empirical analysis of system rebalancing by the operator
focused on understanding the factors creating such imbalances, using an ap-
proach consisting of a binary logit model, for identifying stations that need
rebalancing, and a linear regression model for the amount of rebalancing.
This analysis can help in creating plans for rebalancing well in advance, as
well as in creating incentive mechanisms for customers to rebalance bikes.

As well as analyzing the system and optimizing parameters, the data
collection is also an important part to manage VSSs. As an example, [14]
conducted a stated preference survey in Beijing, China, for a station-based
BSS, in which users can take conventional or electric bikes. Then, a multi-
nomial logit model is developed to model mode-choice. On the other hand,
we did not find any works which provide the value of demand forecasting in
VSSs. In other words, the upper bound on the cost of demand forecasting
operations, such as collecting data and processing, is not discussed in the
literature. This work puts the first and simplistic attempt to find an answer
to this question.

3. Methodology

The proposed framework includes two main modules: simulation and op-
timization. The former simulates the events taking place in the VSS during
a day and the latter takes care of the optimization of the rebalancing oper-
ations by minimizing the total operational cost. After initialization of the
parameters, the simulator simulates the day and passes the final configura-
tion of the day to the optimization module. Then, the difference between
the number of bikes at the station at the end of the previous day and the
number of bikes which is desired at the beginning of the next day, demand
of a station, is calculated and given as an input to the optimization module.
The desired initial configuration of the next day is passed to the simulation
module and the simulation of the next day is triggered. These two modules
feed each other in terms of information (Figure 1).

To mimic the real-world, a discrete event simulator is developed. The
events of the simulator are designed so that the simulator is adaptable to
any kind of VSS. Sections 3.1 and 3.2 give the details on the simulator and
optimization modules, respectively.
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Figure 1: The framework for VSS simulation and rebalancing optimization

3.1. Simulation

The simulation module consists of four event types, namely REQUEST,
PICKUP, DROPOFF, and COMPLETED. The number of people in the system (ns)
and the number of people using a vehicle (nu) at that time are recorded
as indicators. The triggered events are added to the event list which is in
chronological order. Appendix A provides further details on the events and
Table A.1 summarizes the event types, the triggered event(s) by each event
and the change in event queue status.

The state variable of the system is time, denoted as t, and the time horizon
is T . The time is not discretized but drawn for each event according to the
Poisson distribution. Within [0, T ], O-D pair requests arrive to the system.
After T , the events in the system are served and no more O-D pair requests
are generated. We denote the number of stations by N . Ci, for i = 1..N ,
represents the capacity of station i. The distance from station i to station j
with mode k is denoted as ckij, where i = 1..N , j = 1..N , and k = {’walking’,
’bicycle’, ’car’}.

The time horizon is divided into P number of time windows, each denoted
TWp, where p = 1..P . This differentiation makes the simulator flexible at
the temporal level to test different behaviors during the day, such as rush
hours and specific event times. Therefore, the O-D pair request rates are
also specific to these time windows. λp provides the information on the rate
of requests for time window p, where p = 1..P .

Two different cases are compared: unknown and known demand. For the
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unknown demand case, we assume that no information regarding the next
day’s O-D pair request is known. Therefore, the vehicles are distributed
equally every day. For the known demand case, the distribution of the bikes
are done according to next day’s O-D demand behavior regardless of the
time of the request. The difference between the total number of pick-ups and
drop-offs for each station is calculated, and normalized to the total number
of vehicles in the system. In other words, if for a station the number of
pick-ups are more than the number of drop-offs, it gets more bikes; if not,
less bikes are assigned to that station. It is essential to note that the future
work includes the investigation of known demand case where the spatial and
temporal information on O-D pairs rather than the absolute difference of
pick-ups and drop-offs are used.

3.2. Optimization

Among many mathematical formulations, we utilize one of the models,
namely F1, which was introduced in [5]. They consider a station-based BSS
and apply static rebalancing at the end of the day. They define the problem
as a generic one and assume that the initial configuration for the next day is
a parameter. Since the availability of the simulator provides the full informa-
tion on O-D pair requests of the next day, we can utilize this formulation. It
should be noted that, the authors report that formulation F3 provides better
results than F1 in terms of computational time. However, we select F1 due
to its convenience to modify the subtour elimination constraints. The reader
is referred to the work [5] for the full notation of parameters and decision
variables.

Given the exponential number of constraints, the model becomes in-
tractable for large instances. The classical subtour elimination constraints
that are used in F1 corresponds to Dantzig-Fulkerson-Johnson (DFJ) formu-
lation [15]. This formulation introduces 2n+1 number of constraints where
n is the number of stations. In [16], the authors introduce a new formu-
lation, i.e. Miller-Tucker-Zemlin (MTZ), using additional decision variables
and decrease the number of constraints to (n+ 1)2. In order to overcome the
computational burden, this work provides an extension to their formulation
by utilizing the MTZ constraints, constraints (6) and (7) and uses the valid
inequalities proposed by [5], constraints (12) and (13). These valid inequal-
ities ensure that if three nodes have a total supply/demand larger than the
capacity, there is no feasible solution going through them consecutively.
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The modified model is given in F1m. Please note that the constraint set
(14) is added to prevent visiting the same node consecutively. This could
have also been achieved by modifying the cost matrix.

(F1M ) min
∑
i∈V

∑
j∈V

cijxij (1)

s.to
∑
i∈V

xij = 1 ∀j ∈ V \ {0} (2)∑
i∈V

xji = 1 ∀j ∈ V \ {0} (3)∑
j∈V

x0j ≤ m (4)

∑
j∈V \{0}

x0j −
∑

j∈V \{0}

xj0 = 0 (5)

ui − uj + n ∗ xij ≤ n− 1 ∀i, j ∈ V \ {0} (6)

1 ≤ ui ≤ n ∀i ∈ V (7)

θj ≥ max{0, qj} ∀j ∈ V (8)

θj ≤ min{Q,Q+ qj} ∀j ∈ V (9)

θj − θi +M(1− xij) ≥ qj ∀i ∈ V, j ∈ V \ {0} (10)

θi − θj +M(1− xij) ≥ qj ∀i ∈ V \ {0}, j ∈ V (11)

xij +
∑

h∈S(i,j)

xjh ≤ 1 ∀i, j ∈ V \ {0}, h ∈ S(i, j)

(12)∑
h∈S(i,j)

xhi + xij ≤ 1 ∀i, j ∈ V \ {0}, h ∈ S(i, j)

(13)

xii = 0 ∀i ∈ V (14)

xij ∈ {0, 1} ∀i, j ∈ V (15)

4. Computational experiments

The simulation is implemented on a machine with 8 GB RAM and 2.3
GHz Intel Core i5 processor in python and python API for CPLEX 12.9 is
used to solve the optimization model. The constructed environment includes
the station information from Lausanne-Morges district of PubliBike BSS from
Switzerland, which has a station-based, one-way configuration and deploys
static rebalancing. We assume that static rebalancing is done at the end of
every day.
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For random demand scenario, the demand location for an O-D pair is
generated randomly and accepted as a valid location for a request if it lies in
20 minutes’ walk to a station. The Lausanne-Morges district has 35 stations
and 180 bikes in total. Since the stations of PubliBike do not have lockers,
it is possible to leave the bike regardless of the number of bikes existing
in that station. Therefore, the capacity of each station is set to infinity.
λp, for all p = 1..P , is equal to 20 requests per hour. This value does not
have a rationale for now, however in case of availability of data from the
corresponding system, it is possible to include this information with the time
windows. For the scenarios which take spatial differences, i.e. difference in
altitude, into account less demand is generated for the uphill trips compared
to downhill ones. For Lausanne-Morges case study, spatial differences are
important since the city has many uphill and downhill rides.

Each scenario is generated and used for both known and unknown demand
cases to compare between the lost demand and rebalancing operations cost.
The objective function is built with the cost value being the distance traveled
by a truck carrying the bikes. The capacity of a relocating vehicle, Q, is
set to 20 bikes and the number of such vehicles, m, is set to 4. Since we
are interested in the evaluation of the added value of demand forecasting,
the number of lost demand and the total number of O-D pair requests are
presented along with the rebalancing costs. Lost demand corresponds to the
number of users who opt-out because of unavailability of bikes.

The computational time burden results from the mathematical model.
However, with 35 stations it is still solvable in reasonable time. We first
investigate the effect of knowing the O-D demand on lost demand. For
spatially randomly distributed case (Figure 2a), we see that it is difficult
to differentiate between the unknown and known demand cases. On the
other hand, when we take the spatial differences into account (Figure 2b),
unknown demand results in losing more demand in general. The results
show a tendency in decreasing the number of users who opt-out between the
unknown and known demand case. It is worth to note that these results
solely rely on the simulation parameters. Different scenarios might lead to
different results.

From Figure 3, we see that the main cost contributor to the operational
cost is the number of trucks. As the number of trucks decreases the route
length of the rebalancing operations increases substantially. It can also be de-
duced that the demand knowledge does not necessarily yield less rebalancing
cost.
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(a) Lost demand in the case of known
and unknown demand when the demand
is distributed spatially equally

(b) Lost demand in the case of known
and unknown demand when spatial dif-
ferences are taken into account

Figure 2: Day vs Lost demand

(a) Rebalancing cost in the case of
known/unknown demand and different
number of trucks when the demand is dis-
tributed spatially equally

(b) Rebalancing cost in the case of
known/unknown demand and different
number of trucks when spatial differences
are taken into account

*Dashed lines correspond to known and full line to unknown demand

Figure 3: Day vs Rebalancing cost and number of trucks

We also analyzed whether there is a relation between the lost demand
and the cost of rebalancing operations. The results show that there is no
clear pattern between these two performance measures. All in all, in our
preliminary experiments, we see a slight benefit, in terms of the less demand
loss, coming from the knowledge of future demand. However, because of
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insufficient number of experiments, a statistical test on the significancy of
this decrease cannot be applied. Therefore, the results cannot be generalized.

5. Conclusion and future work

Like in many fields of research, the demand forecasting process is one
of the several challenges in the context of VSSs. Although there are many
studies worked on demand forecasting, none set an upper bound on the cost of
such operations. Therefore, this work presents an early attempt to determine
the value of demand forecasting. Optimization and simulation modules are
developed to include two aspects of the operations: supply and demand.
By this way, we are able to investigate the trade off between the cost of
rebalancing operations and lost demand in the case of known and unknown
demand scenarios. Computational experiments are performed on a case study
in Lausanne-Morges district of PubliBike, which is a BSS in Switzerland. The
results show that the cost of rebalancing operations mainly depend on the
number of trucks used. On the other hand, we see a slight improvement in
the number of lost demand with the demand knowledge. No clear relation
between the lost demand and rebalancing costs is found yet, but we will
further investigate in this direction by increasing the number of experiment
repetitions.

The future work includes the development of another simulation module
which mimics the rebalancing operations. By this way, we will be able to
see whether the results of the optimization module can be applied in real
life perfectly. Moreover, the demand distribution is an important element
in this framework. Following work also aims to analyze different scenarios.
At this stage of the research, only the results for BSSs is presented whereas
the simulator is easily adaptable to CSSs. The future work also includes the
extension of the BSS simulator and adapting it to a CSS.
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Appendix A. Simulation: Events

The REQUEST event is generated at the beginning of the simulation for
each O-D pair request. These REQUEST events form the initial event list
which is kept in chronological order and traversed one by one. By this way,
the simulator keeps track of the time. As soon as a REQUEST event is observed
in the event list ns is increased by 1 and a PICKUP event is generated if there is
a station with a positive number of vehicles within walking distance. If there
are no vehicles at the stations within walking distance, the user opts-out,
and the ns is decreased by 1.
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When a PICKUP event appears in the event list, a DROPOFF event, which
consists the desired drop-off station information, is generated if there is at
least one vehicle in that station and nu is increased by 1. Otherwise, the
user opts-out and leaves the system. In this case, we decrease ns by 1.

The DROPOFF event triggers either another DROPOFF event or a COMPLETED

event. The user chooses a drop-off station according to his/her destination
location. However, in some cases, the user might not be able to find an
available parking spot there. Then, another DROPOFF event is triggered and
the user tries the next closest available station. If there is at least one vehicle
available at the corresponding drop-off station, then a COMPLETED event is
generated and nu is decreased by 1. The COMPLETED event is removed from
the queue as soon as the user reaches the destination point which also makes
him/her leave the system, i.e. ns is decreased by 1.

Table A.1: Event types

Event Triggered Event Queue
Sim Start REQUEST, Sim End -

REQUEST

REQUEST (if t < T ),
PICKUP (if there is an available station

within 20 min walk)

ns = ns+ 1
-

PICKUP DROPOFF (if there are available vehicles) nu = nu+ 1

DROPOFF
DROPOFF (if no parking available),
COMPLETED

-
nu = nu− 1

COMPLETED ns = ns− 1
Sim End -
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