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Abstract— In order to have a well-established Intelligent
Transportation System, it is essential to have real-time traffic
data across the network. The growing adoption of smart
mobility technologies led to an even greater need for monitoring
all road links in a network. However, placing more sensors could
represent a more complete set of information, installing and
maintaining them across whole networks is not a cost-effective
approach. Consequently, large traffic networks tend to limit the
monitoring to only critical road links. In order to address this
issue, the paper aims to virtualize the measurements on routes
without traffic detectors by implementing machine learning
based models. The presented method uses the information from
monitored road links as input to the deep learning model
and estimates virtual measurements on unmonitored ones. A
Long Short Term Memory Neural Network architecture was
implemented and the Bayesian optimization was the chosen
method to tune the hyperparameters of the models. The
prediction techniques were developed and tested taking into
consideration the mobility of each individual vehicle, i.e. by
using microscopic road traffic simulation.

Index Terms— traffic sensors, artificial neural networks,
LSTM, spatial extension

I. INTRODUCTION

The availability of real-time traffic flow data is crucial in
the implementation of any control strategy on road networks.
Without reliable traffic monitoring system, an Intelligent
Transportation System (ITS) cannot operate properly. The
monitoring system should gather and transmit data to a cen-
tralized information system or a control room, allowing any
traffic control strategy to be implemented [1]. Additionally,
due to the increasing penetration of connected and automated
vehicles into the roads, ITS has been presenting growing
importance nowadays [2].

The acquisition of traffic data, such as traffic flow, densi-
ties, and speeds, requires different types of sensors. Although
new measurement technologies for traffic monitoring systems
were developed in the last decades (Floating Car Data (FCD)
and Floating Mobile Data (FMD), for example) [3], several
systems still depend exclusively or mainly on traditional
cross-sectional sensors, e.g. loop detectors and magnetic
sensors. One of the reasons is that different measurement
systems have problems handling inhomogeneous data, such
as a difference in time aggregation and location availability
and different semantics [4].

For dense networks, e.g. in urban contexts, the traffic
monitoring system based on cross sectional sensors cannot
provide an accurate assessment of the whole network. For
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economic reasons, only a fraction of links will present
detection points. In other words, there is a compromise
between the budget addressed to install and maintain all
sensors and the reliability expected from the monitoring
system.

In this paper, an Artificial Intelligence based methodology
for spatially extending traffic data and, as a result, improving
the quality of the monitoring system is proposed. By using
the information from monitored links it is possible to infer
the values of unmonitored ones. To the best of our knowl-
edge, there were only three other papers proposing similar
approaches, [5], [1], [6]. In the next section, the strength and
weakness of those works will be discussed.

II. PRELIMINARIES

Artificial Intelligence (AI) based methods have been
widely used to support several activities in the transportation
field. One prominent example of AI use in transportation
is traffic estimation, and inside the field Neural Networks
(NNs) based models stand out as the most researched one,
as pointed out in [7].

Traffic estimation can fall into two categories i) Tem-
poral estimation (long or short-term prediction, being the
latter more relevant and advanced) and ii) Spatial estimation
(extension of traffic data links to links) [8]. The temporal
extension is beyond the scope of this paper, therefore, the
literature review regarding this category will be omitted. A
thorough literature review about this topic can be found in
[7], [8], [9]. The research intensity and the results achieved
in them, evidence the ability of learn traffic dynamics from
data.

On the one hand, leveraging data to predict future values
is a very mature and well-established field. On the other
hand, spatial extension research is still very embryonic. Even
though this subject has been studied for a long time, in
the 1980s, [10] proposed a method of updating the Origin-
Destination (OD) matrix based on traffic counts and estimat-
ing link flows using assignment algorithms. But limitations
in the updating proceeding of OD matrices were exposed in
[11].

In [12] a spatial extension of sorts was proposed as well.
Focusing on mitigating the costs of communication in a
wireless sensor network, spatial correlation between sensors
was studied allowing temporal shifting among them. The
study showed that 20 of the 112 sensors present in the city of
Cambridge (U.K.) could be removed and their measurements
would be derived from the others with acceptable error
margin.



However, the use of AI to solve the previously mentioned
task was not investigated until recently. By employing shal-
low Neural Network to perform the extension of traffic flow
in a synthetic grid network, [5] was the pioneer in that topic.
The feature construction was manually performed based on
empirical knowledge of traffic behavior. Further work was
depicted in [6], comparing several regression methods, such
as Linear Regression, Kernel Regression, Support Vector
Machine, Generalized Least Squares, and NN, for the same
grid network.

In [1] simulations were carried out in a network repre-
senting the city of Benevento in the South of Italy. The
monitored links in the network were selected to match the
traffic surveys realized during the drafting of the Urban
Traffic Plan of Benevento. Again the shallow Neural Network
was employed to effectuate the extension, attaining good
fitting characteristics with a coefficient of determination
R2 = 0.978 in the best link.

III. SIMULATION

The research work was supported by traffic simulations
carried out in SUMO (Simulation of Urban Mobility) which
is a high fidelity microscopic traffic simulation software
[13]. A grid network with 80 road links was used for
the simulation. The demand patterns which generated the
flows in the network were randomized and varied during the
simulation. Moreover, the perimeter edges in the corners of
the network were considered as possible origin-destination
points. The choice of the traffic network and the origin-
destination points was made to match the setup used by [5],
providing a baseline for comparison.

To build up the training and testing database, 30 simula-
tions were performed, each one lasting one day. The values
were aggregated in 60 seconds interval.

Although short sampling intervals typically produce noisy
data [14], monitoring systems are usually set up for aggre-
gation intervals between 5 and 10 minutes [15]. For that
reason, the values were aggregated in 10 minutes intervals
using a moving average filter (MAF) for less erratic data (in
[16] several digital filtering techniques were investigated for
smoothing loop detector data, including MAF, similarly, in
this work, MAF was chosen due to its simplicity).

IV. PROPOSED APPROACH

In this section, the employed Deep Learning model, the
parameter optimization process as well as the feature engi-
neering procedure will be introduced.

A. Deep Learning models

The works depicted previously, consist in the state-of-art
for the considered task since they are the only approaches
proposed until this date. Regarding the input of these models,
the current value of monitored links was used. In this way,
the temporal relationship is not leveraged in the inference
process.

In the scope of traffic flow short-term forecasting, several
approaches based on Long Short Term Memory (LSTM)

neural network were proposed, such as [17], [18], and yield
promising results. LSTM Neural Networks is a type of
Recurrent Neural Network widely used in time series related
problems [19].

B. Bayesian hyperparameter optimization

Neural Network based methods performance can be very
sensitive to hyperparameter setting (e.g. number of neurons,
dropout rate, regularization rate). This parameterization can
be performed manually based on empiric knowledge allied
with trial and error fine-tuning, even though it is a common
and valid practice it does not assure an optimal solution.

In the realm of automated hyperparameter optimization
grid search is the most straightforward, realizing an exhaus-
tive search through a manually specified subset of the hyper-
parameter combination, which can be very time-consuming.
Random search takes points randomized instead of evenly
spaced like grid search does [20].

Evolutionary optimization can tune up deep learning mod-
els thoroughness, achieving new benchmarks in several fields
like exposed in [21], but the computational burden still limits
this approach.

Bayesian search presents a viable solution in fine-tuning
deep learning models, requiring acceptable computing power
and great optimization capabilities [22]. In general lines,
the performance of the deep learning model is assumed to
be a Gaussian process, expressed by the surrogate function
g(.) dependent of the hyperparameters θ. The optimization
process is defined by:

θ∗ = arg max
θ∈Θ

g(θ) (1)

where Θ corresponds to the domain of the parameters.
The guesses of θ can be made in a more informed manner,

choosing the best performing point in the surrogate function
g(.), evaluating in the model and updating g(.) iteratively
until the maximum iteration or other stop criteria is met.

In the paper, a Bayesian search was applied to find the
optimal parameters of the LSTM architecture (i.e. number of
neurons, dropout rate). Since, changing the number of layers
introduces new parameters to the optimization process, such
as a new number of neurons, be optimization of the number
of layers together with other parameters is not recommended.
In this way, the choice of numbers of hidden layers was made
exhaustively, varying from 1 to 3 hidden layers.

Initial results have shown that time window size variation
(i.e. number of time steps into the past) of the LSTM
input sequence introduces disruptive differences into further
parameters (e.g. number of neurons) and model performance.
A fact which compromises the optimization process, for this
reason, the window size was also searched exhaustively with
values varying from 2 to 20.

C. Edge selection

The process of edge selection consists of a crucial step
to the overall performance of spatial extension. The grid
network focus of this work presents 80 links. Even for this



small scale network, the number of possible input/output
combinations exceeds 1.2 × 1024 if the ratio of monitored
and unmonitored links is not set, and if a fixed ratio the
possibilities can surpass 1023.

In a real traffic network sensors are opportunely located
to provide maximum information about the network. In [23]
a two-stage approach was proposed to maximize OD flow
coverage dealing with uncertainty. In the paper, a different
approach was adopted.

The link selection was made in a constructive manner,
starting from a very small number of monitored links (the
eight corner links). The unmonitored link that presented the
worse performance in this configuration was considered to
be monitored in the next iteration. The process continued
until stop criteria were met.

The Bayesian optimization showed similar results between
iterations, for that reason it was only performed when a
stagnation or loss in performance was noticed.

V. NUMERICAL RESULTS

In this section, the results achieved by the depicted ap-
proach of section IV are presented. All the results presented
below are regarded to the testing set, which corresponds to
20% of the whole data set. The traffic variable chosen as
target of the prediction was average traffic speed of the given
road link (i.e. space mean speed). The speed values were
normalized in a standard score manner, setting the values to
present zero mean and the standard deviation equal to one
before the training process.

The results are presented in terms of the coefficient of
determination R2, the maximum value of R2 is 1 (when the
model can perfectly reproduce the observed data) and not
bounded inferiorly. For each road link R2 can be defined by
equation (2):

R2 = 1 −
∑
i

(yi − vi)
2

(yi − ȳ)2
(2)

where v is the predicted speed in a specific link, i is the index
of the value in the test dataset, y and ȳ are the observed data
in the specific link and the average value respectively. The
overall R2 score can be calculated as the average of all links
R2 across the output links.

A. Edge selection results

Naturally, as well as in traditional monitoring systems,
there is a positive correlation between the number of mon-
itored points and the monitoring quality. Firstly, a greater
number of monitored links provide more information about
the network and therefore enabling better estimations. Sec-
ondly, a smaller number of unmonitored links simplifies
the task in hand. Fig. 1 shows the evolution of the overall
performance and the performance of the best and worst links
with respect to the ratio of monitoring links for the LSTM
model.
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Fig. 1. Evolution of performance according to the ratio of monitored links:
LSTM Neural Network

B. Model validation

In order to validate the proposed approach, the method was
tested against traditional Artificial Neural Network (ANN)
and Time Lagged Neural Network (TLNN). Both approaches
were also optimized via Bayesian search. Additionally to the
parameters in the LSTM architecture, regularization rate and
type, and activation function type were optimized.

The input/output configuration considered to established
the comparison between models were the first configuration
which yielded overall performance above 0.8. This outcome
was achieved with 63.75% of monitored links in the network.

Table I shows the Bayesian optimization parameter results
and the numerical results generated by this configuration in
terms of best, worst and overall R2 score.

It can be observed that approaches that take into considera-
tion past values (LSTM and TLNN) outperforms approaches
which consider only instant values. The LSTM model pre-
sented itself superior among others models, achieving not
only better estimations in all links in network, but also more
concise results with less dispersion.

For the LSTM model, the optimization process rejected the
use of dropout between layers, which corroborates the results
found in [24], disfavoring the use of per element dropout in
LSTM networks. Both LSTM and TLNN agreed on the time
window size, showing 8 time steps as optimal window size
for the estimation.

Although the ANN models could effectually achieve ac-
ceptable results on the best-performing link, only LSTM
could maintain acceptable average results. The results for the
worst link in the LSTM model were superior to the average
results of the ANN approach, which is up until this date is
the benchmark in the application.

VI. CONCLUSIONS

In this paper, a spatial extension of monitoring points was
realized using Long Short Term Memory Neural Network.
Spatial extension of traffic data via Artificial Intelligence
configures a great opportunity for monitoring systems. Once



TABLE I
PARAMETERIZATION AND RESULTS BETWEEN APPROACHES

LSTM TLNN ANN
Number of neurons [127, 47] [59, 59, 47] [25,11]
Number of hidden layers 2 3 2
Time Window 8 8 1
Activation type Relu Sigmoid Tanh
Regularization type - l2 l1
Regularization rate - [0.0, 0.05, 0.0] [0.0, 0.0]
Dropout rate [0.0, 0.0] [0.0, 0.218, 0.0] [0.0, 0.0]

Worst Overall Best Worst Overall Best Worst Overall Best
Result 0.685 0.805 0.953 0.616 0.745 0.952 0.198 0.633 0.943

it is capable of increasing system coverage without aggre-
gating additional costs. This proposed strategy overcome the
current alternatives available in the literature.

As future research directions, the authors recommend:
• Perform extension in different traffic networks, includ-

ing case studies in real networks.
• Investigate different deep learning approaches.
• Include measurement errors and data incompleteness to

evaluate the robustness of the model.
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